Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T21:23:53.868Z Has data issue: false hasContentIssue false

Theory of G2 cloud multi-wavelength emission

Published online by Cambridge University Press:  22 May 2014

R. V. Shcherbakov*
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA email: roman@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An object called G2 was recently discovered moving towards the supermassive black hole in the Galactic center. G2 emits infrared (IR) lines and continuum, which allows constraining its properties. The question is still unresolved whether G2 has a central windy star or it is a coreless cloud. Assuming the object is a cloud originating near the apocenter I perform line/continuum IR diagnostics, revisit estimates of non-thermal emission from pericenter passage, and speculate about future observational prospects. This work is partially reported in Shcherbakov (2013) and partially consists of new ideas discussed at the conference.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Anninos, P., Fragile, P. C., Wilson, J., & Murray, S. D. 2012, ApJ, 759, 132Google Scholar
Ballone, A., et al. 2013, e-print arXiv:1305.7238Google Scholar
Bower, G. C., Brunthaler, A., & Falcke, H. 2013, The Astronomer's Telegram, 5159, 1Google Scholar
Burkert, A., Schartmann, M., Alig, C., Gillessen, S., Genzel, R., Fritz, T. K., & Eisenhauer, F. 2012, ApJ, 750, 58Google Scholar
Cuadra, J., Nayakshin, S., & Martins, F. 2008, MNRAS, 383, 458Google Scholar
Eckart, A., et al. 2013, eprint arXiv:1311.2753Google Scholar
Ferland, G. J., et al. 2013, Revista Mexicana de Astronomia y Astrofisica, 49, 137Google Scholar
Gillessen, S., Eisenhauer, F., Fritz, T. K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T., & Genzel, R. 2009a, ApJ Letters, 707, L114CrossRefGoogle Scholar
Gillessen, S., et al. 2012, Nature, 481, 51Google Scholar
Gillessen, S., et al. 2013, ApJ, 774, 44Google Scholar
Lu, J. R., Ghez, A. M., Hornstein, S. D., Morris, M. R., Becklin, E. E., & Matthews, K. 2009, ApJ, 690, 1463Google Scholar
Martins, F., Genzel, R., Hillier, D. J., Eisenhauer, F., Paumard, T., Gillessen, S., Ott, T., & Trippe, S. 2007, Astronony and Astrophysics, 468, 233Google Scholar
Martins, F., Gillessen, S., Eisenhauer, F., Genzel, R., Ott, T., & Trippe, S. 2008, ApJ Letters, 672, L119Google Scholar
Meyer, F. & Meyer-Hofmeister, E. 2012, Astronony and Astrophysics, 546, L2CrossRefGoogle Scholar
Miralda-Escudé, J. 2012, ApJ, 756, 86Google Scholar
Mościbrodzka, M., Shiokawa, H., Gammie, C. F., & Dolence, J. C. 2012, ApJ Letters, 752, L1Google Scholar
Narayan, R., Özel, F., & Sironi, L. 2012, ApJ Letters, 757, L20Google Scholar
Paumard, T., et al. 2006, ApJ, 643, 1011Google Scholar
Phifer, K., et al. 2013, ApJ Letters, 773, L13CrossRefGoogle Scholar
Murray-Clay, R. A. & Loeb, A. 2012, Nature Communications, 3Google Scholar
Sadowski, A., Sironi, L., Abarca, D., Guo, X., Özel, F., & Narayan, R. 2013, MNRAS, 432, 478Google Scholar
Scoville, N. & Burkert, A. 2013, ApJ, 768, 108CrossRefGoogle Scholar
Shcherbakov, R. V. 2013, ApJ submitted, eprint arXiv:1309.2282Google Scholar
Shcherbakov, R. V., Penna, R. F., & McKinney, J. C. 2012, ApJ, 755, 133Google Scholar