Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T04:30:38.028Z Has data issue: false hasContentIssue false

The Supershell-Molecular Cloud Connection in the Milky Way and Beyond

Published online by Cambridge University Press:  21 March 2013

J. R. Dawson
Affiliation:
School of Mathematics & Physics, University of Tasmania, Sandy Bay, TAS 7005, Australia email: joanne.dawson@utas.edu.au
N. M. McClure-Griffiths
Affiliation:
Australia Telescope National Facility, CASS, Marsfield NSW 2122, Australia
Y. Fukui
Affiliation:
Dept. of Astrophysics, Nagoya University, Chikusa-ku, Nagoya, Japan
J. Dickey
Affiliation:
School of Mathematics & Physics, University of Tasmania, Sandy Bay, TAS 7005, Australia email: joanne.dawson@utas.edu.au
T. Wong
Affiliation:
Astronomy Department, University of Illinois, Urbana, IL 61801, USA
A. Hughes
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany
A. Kawamura
Affiliation:
National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between Hi and 12CO(J = 1−0) in supershells. Detailed parsec-resolution case studies of two Milky Way supershells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ∼ 10%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Book, L. G., Chu, Y.-H., & Gruendl, R. A. 2008, ApJS, 175, 165Google Scholar
Dawson, J. R., McClure-Griffiths, N. M., Dickey, J. M., & Fukui, Y. 2011a, ApJ, 741, 85Google Scholar
Dawson, J. R., McClure-Griffiths, N. M., Kawamura, A., et al. 2011b, ApJ, 728, 127Google Scholar
Dawson, J. R., McClure-Griffiths, N. M., Wong, T.et al. 2012 (submitted)Google Scholar
Dobbs, C. L. & Bonnell, I. A. 2008, MNRAS, 385, 1893Google Scholar
Elmegreen, B. G. 2002, ApJ, 577, 206Google Scholar
Fukui, Y., Kawamura, A., Minamidani, T.et al. 2008, ApJS, 178, 56CrossRefGoogle Scholar
Glover, S. C. O. & Mac Low, M.-M. 2007, ApJ, 659, 1317Google Scholar
Joung, M. K. R. & Mac Low, M.-M. 2006, ApJ, 263, 1266Google Scholar
Kim, S., Dopita, M. A., Staveley-Smith, L., & Bessell, M. S. 1999, AJ, 118, 2797CrossRefGoogle Scholar
Kim, S., Staveley-Smith, L., Dopita, M. A., et al. 2003, ApJS, 148, 473CrossRefGoogle Scholar
Mac Low, M.-M. & Glover, S. C. O. 2012, ApJ, 746, 135CrossRefGoogle Scholar
Meaburn, J. 1980, MNRAS, 192, 365CrossRefGoogle Scholar
Ntormousi, E., Burkert, A., Fierlinger, K., & Heitsch, F. 2011, ApJ, 731, 13Google Scholar
Tasker, E. J. & Tan, J. C. 2009, ApJ, 700, 358CrossRefGoogle Scholar
Vázquez-Semadeni, E. 2010, in Astronomical Society of the Pacific Conference Series, Vol. 438, ed. Kothes, R., Landecker, T. L., & Willis, A. G., 83Google Scholar