Skip to main content Accessibility help

Studying Magnetic Fields using Low-frequency Pulsar Observations

  • C. Sobey (a1) (a2) and LOFAR and MWA collaborations


Low-frequency polarisation observations of pulsars, facilitated by next-generation radio telescopes, provide powerful probes of astrophysical plasmas that span many orders of magnitude in magnetic field strength and scale: from pulsar magnetospheres to intervening magneto-ionic plasmas including the ISM and the ionosphere. Pulsar magnetospheres with teragauss field strengths can be explored through their numerous emission phenomena across multiple frequencies, the mechanism behind which remains elusive. Precise dispersion and Faraday rotation measurements towards a large number of pulsars probe the three-dimensional large-scale (and eventually small-scale) structure of the Galactic magnetic field, which plays a role in many astrophysical processes, but is not yet well understood, especially towards the Galactic halo. We describe some results and ongoing work from the Low Frequency Array (LOFAR) and the Murchison Widefield Array (MWA) radio telescopes in these areas. These and other pathfinder and precursor telescopes have reinvigorated low-frequency science and build towards the Square Kilometre Array (SKA), which will make significant advancements in studies of astrophysical magnetic fields in the next 50 years.



Hide All
Aliu, E., et al. 2011, Science, 334, 69
Bhat, N. D. R., et al. 2016, ApJ, 818, 86
Bilous, A. V., et al. 2016, A&A, 591, A134
Brentjens, M. A., & de Bruyn, A. G., 2005, A&A, 441, 1217
Burn, B. J., 1966, MNRAS, 133, 67
Hale, G. E., 1908, ApJ, 28, 315
Hall, J. S., 1949, Science, 109, 166
Han, J. L., et al. 2006, ApJ, 642, 868
Hassall, T. E., et al. 2012, A&A, 543, A66
Haverkorn, M., et al. 2015, PoS(AASKA14), 096
Hermsen, W., et al. 2013, Science, 339, 436
Hiltner, W. A., 1949, Science, 109, 165
Howard, T. A., et al. 2016, ApJ, 831, 208
Johnston, S., et al. 2008, MNRAS, 388, 261
Kondratiev, V. I., et al. 2016, A&A, 585, A128
Lenc, E., et al. 2017, PASA, 34, e040
Manchester, R. N., 1972, ApJ, 172, 43
Manchester, R. N., 1974, ApJ, 188, 637
Manchester, R. N., et al. 2005, AJ, 129, 1993
McSweeney, S. J., et al. 2017, ApJ, 836, 224
Noutsos, A., et al. 2015, A&A, 576, A62
Oppermann, N., et al. 2015, A&A, 575, A118
Pilia, M., et al. 2016, A&A, 586, A92
Rand, R. J., & Lyne, A. G., 1994, A&A, 268, 497
Sobey, C., et al. 2015, MNRAS, 451, 2493
Sotomayor-Beltran, C., et al. 2013, A&A, 552, A58
Timokhin, A. N., 2010, MNRAS, 408, L41
Van Eck, C. L., et al. 2011, ApJ, 728, 97
Weltevrede, P., et al. 2007, A&A, 469, 607
Yao, J. M., et al. 2017, ApJ, 835, 29
Young, N. J., et al. 2012, MNRAS, 427, 114
MathJax is a JavaScript display engine for mathematics. For more information see


Studying Magnetic Fields using Low-frequency Pulsar Observations

  • C. Sobey (a1) (a2) and LOFAR and MWA collaborations


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed