Skip to main content Accessibility help
×
Home

The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2

  • Nick Seymour (a1), D. Stern (a2), C. De Breuck (a3) and for the SHiZRaG collaboration

Abstract

We present the results of a comprehensive Spitzer survey of 70 radio galaxies across 1 < z < 5.2. Using IRAC (3.6–8.0μm), IRS (16 μm) and MIPS (24–160 μm) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame 1.6 μm (H-band). We find that the fraction of emitted light at rest-frame 1.6 μm from stars is >80% for over half the high redshift radio galaxies. The other radio galaxies have 1.6 μm stellar fractions spanning the range 20–80%. The resultant stellar luminosities imply stellar masses of 1011−12M, independent of redshift, indicating that radio galaxies are amoungst the most massive galaxies observed over this redshift range. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the inferred stellar contribution to their shorter-wavelength, mid-IR SEDs. The stellar fraction of the rest-frame 1.6 μm luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5 μm) luminosity. The bolometric energy output of these sources is dominated by the infrared, and the mid-IR luminosities are found to be similar to that of lower redshift (z < 1) radio galaxies. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. A weak, but significant, correlation of stellar mass with radio luminosity is found, consistent with earlier results.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2

  • Nick Seymour (a1), D. Stern (a2), C. De Breuck (a3) and for the SHiZRaG collaboration

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed