The prototypical micro-quasar, SS433, one of the most bizarre objects in the Galaxy, is a weak X-ray source, yet the kinetic energy of its relativistic, precessing jets is vastly greater. In spite of its importance as the nearest example of directly observable relativistic phenomena, we know remarkably little about the nature of this binary system. There are ongoing arguments not only about the mass of the compact object, but even as to whether it is a black hole or a neutron star, an argument that recent high resolution optical spectroscopy has contributed to.
Combined with the INTEGRAL discovery of a new class of highly obscured galactic high-mass X-ray binaries, one of which has been found to precess on a similar timescale to SS433, we suggest that these would indeed be seen by external observers as ULXs, once additional effects such as beaming (either relativistic or geometrical) are included.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.