Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T06:53:31.572Z Has data issue: false hasContentIssue false

The spectral evolution of hot white dwarfs

Published online by Cambridge University Press:  09 October 2020

Antoine Bédard
Affiliation:
Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada emails: bedard@astro.umontreal.ca, bergeron@astro.umontreal.ca
Pierre Bergeron
Affiliation:
Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada emails: bedard@astro.umontreal.ca, bergeron@astro.umontreal.ca
Gilles Fontaine
Affiliation:
Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada emails: bedard@astro.umontreal.ca, bergeron@astro.umontreal.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As they evolve, white dwarfs undergo major changes in their atmospheric composition, a phenomenon known as spectral evolution. In particular, most hot He-rich (DO) stars transform into H-rich (DA) stars as they cool off, most likely as a result of the float-up of residual H. We investigate this DO-to-DA transition by taking advantage of the extensive spectroscopic dataset provided by the Sloan Digital Sky Survey (SDSS). Using our new state-of-the-art non-LTE model atmospheres, we perform a spectroscopic analysis of 1882 hot (Teff >30,000 K) white dwarfs identified in the SDSS. We find that at least 15% of all white dwarfs are born with a He-dominated atmosphere. Among these, ∼2/3 turn into H-rich stars before they reach Teff ∼40,000 K, while the remaining ∼1/3 maintain their He-rich surface throughout their entire evolution. We speculate on the origin of these two groups of objects.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Beauchamp, A., Wesemael, F., & Bergeron, P. 1997, ApJS, 108, 559CrossRefGoogle Scholar
Fontaine, G. & Wesemael, F. 1987, IAU Colloq. 95: 2nd Conference on Faint Blue Stars, 319Google Scholar
Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875CrossRefGoogle Scholar
Kepler, S. O., Pelisoli, I., Koester, D., et al. 2015, MNRAS, 446, 4078CrossRefGoogle Scholar
Kepler, S. O., Pelisoli, I., Koester, D., et al. 2016, MNRAS, 455, 3413CrossRefGoogle Scholar
Kleinman, S. J., Kepler, S. O., Koester, D., et al. 2013, ApJS, 204, 5CrossRefGoogle Scholar
Manseau, P. M., Bergeron, P., & Green, E. M. 2016, ApJ, 833, 127CrossRefGoogle Scholar
Reindl, N., Rauch, T., Werner, K., et al. 2014, A&A, 572, A117Google Scholar
Vennes, S., Pelletier, C., Fontaine, G., et al. 1988, ApJ, 331, 876CrossRefGoogle Scholar
Werner, K. & Herwig, F. 2006, PASP, 118, 183CrossRefGoogle Scholar
Werner, K., Rauch, T., & Reindl, N. 2019, MNRAS, 483, 5291CrossRefGoogle Scholar