Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T07:53:11.424Z Has data issue: false hasContentIssue false

SN 2010jp (PTF10aaxi): A Jet-driven Type II Supernova

Published online by Cambridge University Press:  05 September 2012

Nathan Smith*
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721, USA
S. Bradley Cenko
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
Nat Butler
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
Joshua S. Bloom
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
Mansi M. Kasliwal
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Assaf Horesh
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Shrinivas R. Kulkarni
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Nicholas M. Law
Affiliation:
Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto M5S 3H4, Ontario, Canada
Peter E. Nugent
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Eran O. Ofek
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Dovi Poznanski
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Robert M. Quimby
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Branimir Sesar
Affiliation:
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA
Sagi Ben-Ami
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
Iair Arcavi
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
Avishay Gal-Yam
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
David Polishook
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
Dong Xu
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
Ofer Yaron
Affiliation:
The Weizmann Institute of Science, Rehovot 76100, Israel
Dale A. Frail
Affiliation:
National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA
Mark Sullivan
Affiliation:
Department of Physics, University of Oxford, Keble Road, Oxford, OX13RH, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present photometry and spectroscopy of the peculiar Type II supernova SN 2010jp, also named PTF10aaxi. The light curve exhibits a linear decline with a relatively low peak absolute magnitude of only −15.9 (unfiltered), and a low radioactive decay luminosity at late times that suggests a low synthesized nickel mass of about 0.003 M or less. Spectra of SN 2010jp display an unprecedented triple-peaked Hα line profile, showing: (1) a narrow central component that suggests shock interaction with a dense circumstellar medium (CSM); (2) high-velocity blue and red emission features centered at −12,600 and +15,400 km s−1; and (3) very broad wings extending from −22,000 to +25,000 km s−1. We propose that this line profile indicates a bipolar jet-driven explosion, with the central component produced by normal SN ejecta and CSM interaction at mid and low latitudes, while the high-velocity bumps and broad line wings arise in a nonrelativistic bipolar jet. Jet-driven SNe II are predicted for collapsars resulting from a wide range of initial masses above 25 M, especially at the sub-solar metallicity consistent with the SN host environment. It also seems consistent with the apparently low 56Ni mass that may accompany black hole formation. We speculate that the jet survives to produce observable signatures because the star's H envelope was very low mass, having been mostly stripped away by the previous eruptive mass loss.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Blondin, J. J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971CrossRefGoogle Scholar
Bodenheimer, P. & Ostriker, J. P. 1974, ApJ, 191, 465CrossRefGoogle Scholar
Bucciantini, N., Thompson, T. A., Aarons, J., Quataert, E., & Del Zanna, L. 2006, MNRAS, 368, 1717CrossRefGoogle Scholar
Buras, R., Rampp, M., Janka, H. T., & Kifonidis, K. 2006a, A&A, 447, 1049Google Scholar
Buras, R., Janka, H. T., Rampp, M., & Kifonidis, K. 2006b, A&A, 457, 281Google Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J. 2006, ApJ, 640, 878CrossRefGoogle Scholar
Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. 2007, ApJ, 664, 416CrossRefGoogle Scholar
Couch, S. M., Wheeler, J. C., & Milosavljević, M. 2009, ApJ, 696, 953CrossRefGoogle Scholar
Dessart, L., Burrows, A., Livne, E., & Ott, C. D. 2008, ApJ, 673, L43CrossRefGoogle Scholar
Galama, T. J., et al. 1998, Nature, 395, 670CrossRefGoogle Scholar
Halpern, J. P. & Filippenko, A. V. 1988, Nature, 331, 46CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288CrossRefGoogle Scholar
Höflich, P. A., Kholkov, A., & Wang, L. 2001, in 20th Texas Symp. on Relativistic Astroph., eds. Wheeler, J.C., & Martel, H. (New York: AIP), 459Google Scholar
Khokhlov, M., Höflich, P. A., Oran, E. S., Wheeler, J. C., Wang, L., & Chtchelkanova, A. Y. 1999, ApJ, 524, L107CrossRefGoogle Scholar
Komissarov, S. S. & Barkov, M. V. 2007, MNRAS, 382, 1029CrossRefGoogle Scholar
LeBlanc, J. M. & Wilson, J. R. 1970, ApJ 161, 541CrossRefGoogle Scholar
Leonard, D. C., Filippenko, A. V., Ardila, D. R., & Brotherton, M. S. 2001, ApJ, 553, 861CrossRefGoogle Scholar
Leonard, D. C., et al. 2006, Nature, 440, 505CrossRefGoogle Scholar
Li, W., et al. 2011, MNRAS, 412, 1441CrossRefGoogle Scholar
MacFadyen, A. I. & Woosley, S. E. 1999, ApJ, 524, 262CrossRefGoogle Scholar
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410CrossRefGoogle Scholar
Maeda, K. & Nomoto, K. 2003, ApJ, 598, 1163CrossRefGoogle Scholar
Matheson, T., et al. 2003, ApJ, 599, 394CrossRefGoogle Scholar
Mazzali, P. A., et al. 2005, Science, 308, 1284CrossRefGoogle Scholar
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. 2010, arXiv:1012.0001Google Scholar
Piro, A. L. & Ott, C. D. 2011, ApJ, 736, 108CrossRefGoogle Scholar
Smith, N., Chornock, R., Li, W., Ganeshalingam, M., Silverman, J. S., Foley, R., Filippenko, A. V., & Barth, A. J. 2008a, ApJ, 686, 467CrossRefGoogle Scholar
Smith, N., Hinkle, K. H., & Ryde, N. 2009, AJ, 137, 3558CrossRefGoogle Scholar
Smith, N., et al. 2012, MNRAS, 420, 1135CrossRefGoogle Scholar
Soderberg, A., et al. 2009, Nature, 463, 513CrossRefGoogle Scholar
Thompson, T. A., Chang, P., & Quataert, E. 2004, ApJ, 611, 380CrossRefGoogle Scholar
Wheeler, J. C., Yi, I., Höflich, P., & Wang, L. 2000, ApJ, 537, 810CrossRefGoogle Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507CrossRefGoogle Scholar