Skip to main content Accessibility help
×
Home

Simulation of organic interstellar dust in the laboratory

  • Walt W. Duley (a1)

Abstract

New techniques for the generation and analysis of carbon nanoparticles (CNPs) have been developed and have resulted in the production of CNP samples whose infrared spectral properties are essentially identical to those observed in interstellar absorption and emission. These particles are of mixed aromatic/aliphatic composition. Spectra of CNPs containing 102–104 atoms will be discussed in relation to spectra of interstellar materials. We find that infrared line widths in these samples are typically 10–30 cm−1, but can be as small as 2 cm−1. Simulation of the 3.28 μm feature is shown to yield important new insight into the nature of interstellar CNPs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simulation of organic interstellar dust in the laboratory
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simulation of organic interstellar dust in the laboratory
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simulation of organic interstellar dust in the laboratory
      Available formats
      ×

Copyright

References

Hide All
Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733
Dartois, E. 2007, A&A, 463, 635
Dieringer, J. A. 2006, Faraday Disc., 132, 9
Duley, W. W. 2000, ApJ, 528, 841
Duley, W. W. & Williams, D. A. 1981, MNRAS, 196, 269
Duley, W. W. & Williams, D. A. 1983, MNRAS, 205, 67P
Duley, W. W., et al. 2005, ApJ, 626, 923
Etchegoin, P., et al. 2003, Chem. Phys. Lett., 367, 223
Ferrari, A. C. & Robertson, J. 2000, Phys. Rev. B, 61, 14095
Geballe, T. R. 1997, in: Pendleton, Y. J. & Tielens, A. G. G. M. (eds.), From Stardust to Planetisimals, ASP Conf. Ser. 122, (San Francisco: ASP), p. 109
Grishko, V. & Duley, W. W. 2000, ApJ (Letters), 543, L85
Hu, A., Alkhesho, I., Duley, W. W., & Zhou, H. 2006, J. Appl. Phys., 100, 084319
Hu, A., Alkhesho, I., Zhou, H., & Duley, W. W. 2007a, Diamond and Related Materials, 16, 149
Hu, A. & Duley, W. W. 2007, ApJ, 672, L81
Hu, A. & Duley, W. W. 2008, ApJ, in press
Hu, A., Lu, Q-B., Duley, W. W., & Rybachuk, M. 2007b, J. Chem. Phys., 126, 154705
Hudgins, D. M. & Allamandola, L. J. 1999, 513, L69
Hudgins, D. M. & Allamandola, L. J. 2004, in: Witt, A. N., Clayton, G. C., & Draine, B. T. (eds.), ASP Conf. Ser. 309, Astrophysics of Dust, (San Francisco: ASP), p. 665
Joblin, C., Boissel, P., Leger, A., d'Hendecourt, L., & Defourneau, D. 1995, A&A, 299, 835
Leger, A. & Puget, J. L. 1984, A&A (Letters), 137, L5
Mapelli, C., Castiglione, C., Zerbi, G. & Mullen, K. 1999, Phys. Rev. B, 60, 12710
Moskovits, M. 1985, Rev. Mod. Phys., 57, 78
Peeters, E., et al. 2002, A&A, 390, 1089
Peeters, E., Mattioda, A. L., Hudgins, D. M. & Allamandola, L. J. 2004, ApJ (Letters), 617, L65
Rouan, D., Le Coupanec, P., Lacombe, F., Tiphene, D., Gallais, P., Leger, A., & Boulanger, F. 1999, in The Universe as seen by ISO, ESA, SP-427, p. 743
Scott, A., Duley, W. W., & Jahani, H. R. 1997, ApJ (Letters), 490, L175
Sellgren, K. 2001, Spectrochimica Acta, A57, 627
Sloan, G. C., et al. 2005, ApJ, 632, 956
Tokunaga, A. T. 1996, in: Onaka, H., Matsumoto, T. & Roelig, T. L. (eds.), Diffuse Infrared Radiation and the IRTS, ASP Conf. Ser. 124, (San Francisco:ASP), p. 149
van Diedenhoven, et al. , 2004, ApJ, 611, 928
Werner, M. W., et al. 2004, ApJS, 154, 309
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Simulation of organic interstellar dust in the laboratory

  • Walt W. Duley (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.