Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T12:45:39.406Z Has data issue: false hasContentIssue false

Signposts of Multiple Planets in Debris Disks

Published online by Cambridge University Press:  06 January 2014

Kate Y. L. Su
Affiliation:
Steward Observatory, University of Arizona, 933 N Cherry Avenue, AZ 85750, USA email: ksu@as.arizona.edu, grieke@as.arizona.edu
G. H. Rieke
Affiliation:
Steward Observatory, University of Arizona, 933 N Cherry Avenue, AZ 85750, USA email: ksu@as.arizona.edu, grieke@as.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Absil, O., Mennesson, B., Le Bouquin, J.-B., et al. 2009, ApJ, 704, 150CrossRefGoogle Scholar
Acke, B., Min, M., Dominik, C., et al. 2012, A&A, 540, 125Google Scholar
Backman, D., Marengo, M., Stapelfeldt, K. R., et al. 2009, ApJ, 690, 1522CrossRefGoogle Scholar
Ballering, N. P., Rieke, G. H., Su, K. Y. L., & Montiel, E. 2013, ApJ, 775, 55CrossRefGoogle Scholar
Boley, A. C., Payne, M. J., Corder, S., et al. 2012, ApJL, 750, L21CrossRefGoogle Scholar
Dermott, S. F. & Murray, C. D. 1983, Nature, 301, 201CrossRefGoogle Scholar
Gaspar, A., Psaltis, D., Rieke, G. H., & Ozel, F. 2012, ApJ, 754, 74CrossRefGoogle Scholar
Hughes, M., et al. 2011, ApJ, 740, 38Google Scholar
Kalas, P., Graham, J. R., & Clampin, M. 2005, Nature, 435, 1067CrossRefGoogle Scholar
Kirkwood, D. 1867, Meteoric Astronomy, co., 1867Google Scholar
Lebreton, J.et al. 2013, A&A, 555, 146Google Scholar
Liou, J. C. & Zook, H. A. 1999, AJ, 118, 580CrossRefGoogle Scholar
Malhotra, R. 1993, Nature, 365, 819Google Scholar
Marois, C., Lafreniere, D., Doyon, R., et al. 2006, ApJ, 641, 556CrossRefGoogle Scholar
Marois, C., Zuckeman, B., Konopacky, Q. M., et al. 2010, Nature, 468, 1080CrossRefGoogle Scholar
Mennesson, B., Absil, O., Lebreton, J., et al. 2013, ApJ, 763, 119Google Scholar
Morales, F. Y., Padgett, D. L., et al. 2012, ApJ, 757, 7CrossRefGoogle Scholar
Su, K. Y. L., et al. 2005, ApJ, 628, 487CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., et al. 2009, ApJ, 705, 314CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Malhotra, R., et al. 2013, ApJ, 763, 118CrossRefGoogle Scholar