Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T10:29:47.918Z Has data issue: false hasContentIssue false

Searching for the cycle period in chromospherically active stars

Published online by Cambridge University Press:  24 September 2020

F. Villegas
Affiliation:
Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile emails: mailto:fabrivillegas@udec.cl, mailto:rmennick@udec.cl, mailto:jgarcesletelier@gmail.com
R. E. Mennickent
Affiliation:
Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile emails: mailto:fabrivillegas@udec.cl, mailto:rmennick@udec.cl, mailto:jgarcesletelier@gmail.com
J. Garcés
Affiliation:
Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile emails: mailto:fabrivillegas@udec.cl, mailto:rmennick@udec.cl, mailto:jgarcesletelier@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The detection and analysis of line emission of the CaII, H(396.8nm) and K(393.3nm) have confirmed the chromospheric activity of some single and binaries stars. This activity is associated to the presence of magnetic fields which in turn are produced by internal convective flows along with stellar rotation producing a long-term photometric cycle length related to the apparition and vanishing of superficial stellar spots. We present a photometric study of stars of the type RS CVn, Rotationally variable Star and BY Dra, that have shown evidence of chromospheric activity. The analysis of these measurements has allowed us to delimit periods of rotation. In addition, we have detected and measured the cycle length in some cases. It allows us to complement previous investigations and in some cases to determine for the first time the presence of a long photometric cycle, contributing to complement the link between rotation and magnetic cycles.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baliunas, S. L. & Vaughan, A. H. 1985, ARA&A, 23, 379CrossRefGoogle Scholar
Böhm-Vitense, E. 2007, ApJ, 657, 486CrossRefGoogle Scholar
Boro Saikia, S., Marvin, C. J., Jeffers, S. V., Reiners, A., Cameron, R., Marsden, S. C., Petit, P., Warnecke, J. & Yadav, A. P. 2018, A&A, 616A, 108BGoogle Scholar
Mennickent, R. E., Djurašević, G., Kołaczkowski, Z., & Michalska, G., 2012, MNRAS, 421, 862Google Scholar
Montes, D. 1995, Doct en Ciencias Físicas, Universidad Complutense de Madrid, MadridGoogle Scholar
Messina, S. & Guinan, E. F. 2002, A&A, 393, 225Google Scholar
O’Connell, D. 1951, Publ. Riverview College Obs., 2, 85Google Scholar
Oláh, K., Kövári, Zs., Petrovay, K., Soon, W., Baliunas, S., Kolláth, Z., & Vida, K. 2016, A&A, 590, A133Google Scholar
Phillips, M. J. & Hartmann, L. 1978, ApJ, 224, 182184CrossRefGoogle Scholar
Pojmanski, G. 2003, Acta Astronomica, 53, 341Google Scholar
Saar, S. H. & Brandenburg, A. 1999, ApJ, 524, 295CrossRefGoogle Scholar
Vida, K., Kriskovics, L., & Oláh, K. 2013, AN, 334, 972Google Scholar
Vida, K., Oláh, K., & Szabó, R. 2014, MNRAS, 441, 2744CrossRefGoogle Scholar
Villegas, F. 2019, M.Sc. thesis, U. de ConcepciónGoogle Scholar
Wilson, O. 1978, ApJ, 226, 379CrossRefGoogle Scholar