Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9sqjz Total loading time: 0.213 Render date: 2021-05-09T20:19:23.858Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Revealing Short GRB Jet Structure and Dynamics with Gravitational Wave Electromagnetic Counterparts

Published online by Cambridge University Press:  29 January 2019

Gavin P. Lamb
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: g.p.lamb@2010.ljmu.ac.uk
Shiho Kobayashi
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: g.p.lamb@2010.ljmu.ac.uk
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Compact object mergers are promising candidates for the progenitor system of short gamma-ray bursts (GRBs). Using gravitational wave (GW) triggers to identify a merger, any electromagnetic (EM) counterparts from the jet can be used to constrain the dynamics and structure of short GRB jets. GW triggered searches could reveal a hidden population of optical transients associated with the short-lived jets from the merger object. If the population of merger-jets is dominated by low-Lorentz-factors, then a GW triggered search will reveal the on-axis orphan afterglows from these failed GRBs. By considering the EM counterparts from a jet, with or without the prompt GRB, the jet structure and dynamics can be constrained. By modelling the afterglow of various jet structures with viewing angle, we provide observable predictions for the on- and off- axis EM jet counterparts. The predictions provide an indication for the various features expected from the proposed jet structure models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Living Reviews in Relativity, 19, 1CrossRefGoogle Scholar
Barkov, M. V. & Pozanenko, A. S., 2011, MNRAS, 417, 2161CrossRefGoogle Scholar
Barnes, J. & Kasen, D., 2013, ApJ, 775, 18CrossRefGoogle Scholar
Barnes, J., Kasen, D., Wu, M.-R., & Martínez-Pinedo, G., 2016, ApJ, 829, 110CrossRefGoogle Scholar
Berger, E., 2014, ARA&A, 52, 43CrossRefGoogle Scholar
Bogomazov, A. I., Lipunov, V. M., & Tutukov, A. V., 2007, Astronomy Reports, 51, 308CrossRefGoogle Scholar
Bromberg, O., Nakar, E., Piran, T., & Sari, R., 2011, ApJ, 740, 100CrossRefGoogle Scholar
Cenko, S. B., Kulkarni, S. R., Horesh, A., et al. 2013, ApJ, 769, 130CrossRefGoogle Scholar
Coward, D. M., Branchesi, M., Howell, E. J., Lasky, P. D., & Böer, M., 2014, MNRAS, 445, 3575CrossRefGoogle Scholar
Dermer, C. D., Chiang, J., & Mitman, K. E., 2000, ApJ, 537, 785CrossRefGoogle Scholar
Eichler, D., Livio, M., Piran, T., & Schramm, D. N., 1989, Nature, 340, 126CrossRefGoogle Scholar
Falcke, H., Körding, E., & Markoff, S., 2004, A&A, 414, 895Google Scholar
Fong, W., Berger, E., Margutti, R., & Zauderer, B. A., 2015, ApJ, 815, 102CrossRefGoogle Scholar
Ghirlanda, G., Salafia, O. S., Pescalli, A., et al. 2016, A&A, 594, A84Google Scholar
Gottlieb, O., Nakar, E., & Piran, T., 2018, MNRAS, 473, 576CrossRefGoogle Scholar
Granot, J., Panaitescu, A., Kumar, P., & Woosley, S. E., 2002, ApJ, 570, L61CrossRefGoogle Scholar
Hascoët, R., Beloborodov, A. M., Daigne, F., & Mochkovitch, R., 2014, ApJ, 782, 5CrossRefGoogle Scholar
Heinz, S. & Sunyaev, R. A., 2003, MNRAS, 343, L59CrossRefGoogle Scholar
Hotokezaka, K. & Piran, T., 2015, MNRAS, 450, 1430CrossRefGoogle Scholar
Hotokezaka, K., Nissanke, S., Hallinan, G., et al. 2016, ApJ, 831, 190CrossRefGoogle Scholar
Huang, Y. F., Dai, Z. G., & Lu, T., 2002, MNRAS, 332, 735CrossRefGoogle Scholar
Jin, Z. P., Yan, T., Fan, Y. Z., & Wei, D. M., 2007, ApJ, 656, L57CrossRefGoogle Scholar
Jin, Z.-P., Li, X., Wang, H., et al. 2017, arXiv:1708.07008Google Scholar
Kathirgamaraju, A., Barniol Duran, R., & Giannios, D., 2017, MNRAS, 473, 121CrossRefGoogle Scholar
Kisaka, S., Ioka, K., Kashiyama, K., & Nakamura, T. 2017, arXiv:1711.00243Google Scholar
Kochanek, C. S. & Piran, T., 1993, ApJ, 417, L17CrossRefGoogle Scholar
Kumar, P. & Granot, J., 2003, ApJ, 591, 1075CrossRefGoogle Scholar
Kyutoku, K., Ioka, K., & Shibata, M., 2014, MNRAS, 437, L6CrossRefGoogle Scholar
Lamb, G. P. & Kobayashi, S., 2016, ApJ, 829, 112CrossRefGoogle Scholar
Lamb, G. P. & Kobayashi, S., 2017a, New Frontiers in Black Hole Astrophysics, 324, 66Google Scholar
Lamb, G. P., Kobayashi, S., & Pian, E., 2017b, MNRAS, 472, 475CrossRefGoogle Scholar
Lamb, G. P. & Kobayashi, S., 2017c, MNRAS, 472, 4953CrossRefGoogle Scholar
Lamb, G. P. & Kobayashi, S. 2017d, arXiv:1710.05857Google Scholar
Lamb, G. P., Tanaka, M., & Kobayashi, S. 2017e, arXiv:1712.00418Google Scholar
Lazzati, D. & Begelman, M. C., 2005, ApJ, 629, 903CrossRefGoogle Scholar
Lazzati, D., Deich, A., Morsony, B. J., & Workman, J. C., 2017, MNRAS, 471, 1652CrossRefGoogle Scholar
Lei, W.-H., Zhang, B., & Liang, E.-W., 2013, ApJ, 765, 125CrossRefGoogle Scholar
Levinson, A. & Eichler, D., 2003, ApJ, 594, L19CrossRefGoogle Scholar
Li, L.-X. & Paczyński, B., 1998, ApJ, 507, L59CrossRefGoogle Scholar
Lyutikov, M. & Blandford, R. 2002, Beaming and Jets in Gamma Ray Bursts, 146Google Scholar
Ma, R., Xie, F.-G., & Hou, S., 2014, ApJ, 780, L14CrossRefGoogle Scholar
Margalit, B. & Piran, T., 2015, MNRAS, 452, 3419CrossRefGoogle Scholar
Merloni, A., Heinz, S., & di Matteo, T., 2003, MNRAS, 345, 1057CrossRefGoogle Scholar
Mészáros, P., 2002, ARA&A, 40, 137CrossRefGoogle Scholar
Metzger, B. D. & Fernández, R., 2014, MNRAS, 441, 3444CrossRefGoogle Scholar
Metzger, B. D. & Zivancev, C., 2016, MNRAS, 461, 4435CrossRefGoogle Scholar
Metzger, B. D., 2017, Living Reviews in Relativity, 20, 3CrossRefGoogle Scholar
Metzger, B. D. 2017, arXiv:1710.05931Google Scholar
Mochkovitch, R., Hernanz, M., Isern, J., & Martin, X., 1993, Nature, 361, 236CrossRefGoogle Scholar
Morsony, B. J., Lazzati, D., & Begelman, M. C., 2010, ApJ, 723, 267CrossRefGoogle Scholar
Nakar, E. & Piran, T., 2003, New Ast., 8, 141CrossRefGoogle Scholar
Nakar, E., 2007, Phys. Rep., 442, 166CrossRefGoogle Scholar
Nakar, E. & Piran, T., 2011, Nature, 478, 82CrossRefGoogle Scholar
Nakar, E. & Piran, T., 2017, ApJ, 834, 28CrossRefGoogle Scholar
Narayan, R., Paczynski, B., & Piran, T., 1992, ApJ, 395, L83CrossRefGoogle Scholar
Nemmen, R. S., Georganopoulos, M., Guiriec, S., et al. 2012, Science, 338, 1445CrossRefGoogle Scholar
Nissanke, S., Holz, D. E., Hughes, S. A., Dalal, N., & Sievers, J. L., 2010, ApJ, 725, 496CrossRefGoogle Scholar
Nissanke, S., Kasliwal, M., & Georgieva, A., 2013, ApJ, 767, 124CrossRefGoogle Scholar
Panaitescu, A., 2005, MNRAS, 363, 1409CrossRefGoogle Scholar
Pe’er, A., Mészáros, P., & Rees, M. J., 2005, ApJ, 635, 476CrossRefGoogle Scholar
Peng, F., Königl, A., & Granot, J., 2005, ApJ, 626, 966CrossRefGoogle Scholar
Pescalli, A., Ghirlanda, G., Salafia, O. S., et al. 2015, MNRAS, 447, 1911CrossRefGoogle Scholar
Piran, T., Nakar, E., & Rosswog, S., 2013, MNRAS, 430, 2121CrossRefGoogle Scholar
Rhoads, J. E., 2003, ApJ, 591, 1097CrossRefGoogle Scholar
Rossi, E., Lazzati, D., & Rees, M. J., 2002, MNRAS, 332, 945CrossRefGoogle Scholar
Rossi, E. M., Lazzati, D., Salmonson, J. D., & Ghisellini, G., 2004, MNRAS, 354, 86CrossRefGoogle Scholar
Salafia, O. S., Ghisellini, G., Ghirlanda, G., & Colpi, M. 2017, arXiv:1711.03112Google Scholar
Sari, R., Piran, T., & Narayan, R., 1998, ApJ, 497, L17CrossRefGoogle Scholar
Schutz, B. F., 2011, Classical and Quantum Gravity, 28, 125023CrossRefGoogle Scholar
Sun, H., Zhang, B., & Gao, H., 2017, ApJ, 835, 7CrossRefGoogle Scholar
Tanaka, M. & Hotokezaka, K., 2013, ApJ, 775, 113CrossRefGoogle Scholar
Tanaka, M., Hotokezaka, K., Kyutoku, K., et al. 2014, ApJ, 780, 31CrossRefGoogle Scholar
Tanaka, M., 2016, Advances in Astronomy, 2016, 634197CrossRefGoogle Scholar
Tanaka, M., Kato, D., Gaigalas, G., et al. 2017, arXiv:1708.09101Google Scholar
Tanaka, M., Utsumi, Y., Mazzali, P. A., et al. 2017, arXiv:1710.05850Google Scholar
Thompson, C., Mészáros, P., & Rees, M. J., 2007, ApJ, 666, 1012CrossRefGoogle Scholar
Tsang, D., Read, J. S., Hinderer, T., Piro, A. L., & Bondarescu, R., 2012, Physical Review Letters, 108, 011102CrossRefGoogle Scholar
Türler, M., Courvoisier, T. J.-L., Chaty, S., & Fuchs, Y., 2004, A&A, 415, L35Google Scholar
van Putten, M. H. P. M. & Levinson, A., 2003, ApJ, 584, 937CrossRefGoogle Scholar
Vlahakis, N., Peng, F., & Königl, A., 2003, ApJ, 594, L23CrossRefGoogle Scholar
Wanderman, D. & Piran, T., 2015, MNRAS, 448, 3026CrossRefGoogle Scholar
Wang, F. Y. & Dai, Z. G., 2017, MNRAS, 470, 1101CrossRefGoogle Scholar
Wei, D. M. & Jin, Z. P., 2003, A&A, 400, 415Google Scholar
Xiao, D., Liu, L.-D., Dai, Z.-G., & Wu, X.-F. 2017, arXiv:1710.00275Google Scholar
Yuan, F. & Zhang, B., 2012, ApJ, 757, 56CrossRefGoogle Scholar
Zhang, B. & Mészáros, P., 2002, ApJ, 571, 876CrossRefGoogle Scholar
Zhang, B., 2013, ApJ, 763, L22CrossRefGoogle Scholar
Zhang, W., Woosley, S. E., & MacFadyen, A. I., 2003, ApJ, 586, 356CrossRefGoogle Scholar
Zhang, W., Woosley, S. E., & Heger, A., 2004, ApJ, 608, 365CrossRefGoogle Scholar
Zou, Y. C., Wu, X. F., & Dai, Z. G., 2007, A&A, 461, 115Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Revealing Short GRB Jet Structure and Dynamics with Gravitational Wave Electromagnetic Counterparts
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Revealing Short GRB Jet Structure and Dynamics with Gravitational Wave Electromagnetic Counterparts
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Revealing Short GRB Jet Structure and Dynamics with Gravitational Wave Electromagnetic Counterparts
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *