Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T11:37:51.642Z Has data issue: false hasContentIssue false

Recent advances in non-LTE stellar atmosphere models

Published online by Cambridge University Press:  28 July 2017

Andreas A. C. Sander*
Affiliation:
Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany email: ansander@astro.physik.uni-potsdam.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters.

After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Anderson, L. S., 1989, ApJ, 339, 558 Google Scholar
Carneiro, L. P., Puls, J., Sundqvist, J. O., & Hoffmann, T. L., 2016, A&A, 590, A88 Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I., 1975, ApJ, 195, 157 Google Scholar
Dessart, L. & Hillier, D. J., 2010, MNRAS, 405, 2141 Google Scholar
Dreizler, S. & Werner, K., 1993, A&A, 278, 199 Google Scholar
Friend, D. B. & Abbott, D. C., 1986, ApJ, 311, 701 CrossRefGoogle Scholar
Gräfener, G. & Hamann, W.-R., 2005, A&A, 432, 633 Google Scholar
Gräfener, G. & Hamann, W.-R., 2008, A&A, 482, 945 Google Scholar
Gräfener, G., Koesterke, L., & Hamann, W.-R., 2002, A&A, 387, 244 Google Scholar
Hamann, W.-R., 1985, A&A, 148, 364 Google Scholar
Hamann, W.-R., 1986, A&A, 160, 347 Google Scholar
Hamann, W.-R. 1987, Num. rad. transfer, 35 (ed. Kalkofen, W., Cambridge: Univ. Press, 1987)Google Scholar
Hamann, W.-R. & Schmutz, W., 1987, A&A, 174, 173 Google Scholar
Hauschildt, P. H., 1992, J. Quant. Spec. Radiat. Transf., 47, 433 CrossRefGoogle Scholar
Hauschildt, P. H., Allard, F., & Baron, E., 1999, ApJ, 512, 377 CrossRefGoogle Scholar
Hauschildt, P. H. & Baron, E., 2004, A&A, 417, 317 Google Scholar
Hauschildt, P. H. & Baron, E., 2006, A&A, 451, 273 Google Scholar
Hauschildt, P. H. & Baron, E., 2014, A&A, 566, A89 Google Scholar
Hillier, D. J., 1990, A&A, 231, 116 Google Scholar
Hillier, D. J., 1991, A&A, 247, 455 Google Scholar
Hillier, D. J., Bouret, J.-C., Lanz, T., & Busche, J. R., 2012, MNRAS, 426, 1043 CrossRefGoogle Scholar
Hillier, D. J. & Miller, D. L., 1998, ApJ, 496, 407 Google Scholar
Hubeny, I. & Mihalas, D. 2014, Theory of Stellar Atmospheres (Princeton: Univ. Press, 2014)Google Scholar
Hummer, D. G. & Seaton, M. J., 1963, MNRAS, 125, 437 CrossRefGoogle Scholar
Kaschinski, C. B., Pauldrach, A. W. A., & Hoffmann, T. L., 2012, A&A, 542, A45 Google Scholar
Koesterke, L., Hamann, W.-R., & Gräfener, G., 2002, A&A, 384, 562 Google Scholar
Krtička, J., 2006, MNRAS, 367, 1282 CrossRefGoogle Scholar
Krtička, J. & Kubát, J., 2004, A&A, 417, 1003 Google Scholar
Krtička, J. & Kubát, J., 2009, MNRAS, 394, 2065 Google Scholar
Krtička, J. & Kubát, J., 2010, A&A, 519, A50 Google Scholar
Lucy, L. B., 1964, SAO Special Report, 167, 93 Google Scholar
Lucy, L. B., 2007, A&A, 468, 649 Google Scholar
Lucy, L. B., 2010a, A&A, 512, A33 Google Scholar
Lucy, L. B., 2010b, A&A, 524, A41 Google Scholar
Lucy, L. B., 2012, A&A, 543, A18 Google Scholar
Lucy, L. B. & Solomon, P. M., 1970, ApJ, 159, 879 Google Scholar
Maeder, A. & Meynet, G., 2000, A&A, 361, 159 Google Scholar
Martins, F. & Hillier, D. J., 2012, A&A, 545, A95 Google Scholar
Mihalas, D., Kunasz, P. B., & Hummer, D. G., 1975, ApJ, 202, 465 Google Scholar
Müller, P. E. & Vink, J. S., 2008, A&A, 492, 493 Google Scholar
Müller, P. E. & Vink, J. S., 2014, A&A, 564, A57 Google Scholar
Noebauer, U. M. & Sim, S. A., 2015, MNRAS, 453, 3120 CrossRefGoogle Scholar
Pauldrach, A., Puls, J., & Kudritzki, R. P., 1986, A&A, 164, 86 Google Scholar
Pauldrach, A. W. A., Hoffmann, T. L., & Hultzsch, P. J. N., 2014, A&A, 569, A61 Google Scholar
Pauldrach, A. W. A., Hoffmann, T. L., & Lennon, M., 2001, A&A, 375, 161 Google Scholar
Pauldrach, A. W. A., Kudritzki, R. P., Puls, J., et al. 1994, A&A, 283, 525 Google Scholar
Pauldrach, A. W. A., Vanbeveren, D., & Hoffmann, T. L., 2012, A&A, 538, A75 Google Scholar
Puls, J., 1987, A&A, 184, 227 Google Scholar
Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A, 435, 669 Google Scholar
Rivero González, J. G., Puls, J., & Najarro, F., 2011, A&A, 536, A58 Google Scholar
Rivero González, J. G., Puls, J., Najarro, F., & Brott, I., 2012, A&A, 537, A79 Google Scholar
Sander, A., Shenar, T., Hainich, R., et al. 2015, A&A, 577, A13 Google Scholar
Sander, A., Hamann, W.-R., Hainich, R., et al. 2015, Wolf-Rayet Stars: Proceedings, p. 139142 (ed. Hamann, W.-R., Sander, A., & Todt, H., Universitätsverlag Potsdam, 2015)Google Scholar
Santolaya-Rey, A. E., Puls, J., & Herrero, A., 1997, A&A, 323, 488 Google Scholar
Shenar, T., Hamann, W.-R., & Todt, H., 2014, A&A, 562, A118 Google Scholar
Sobolev, V. V. 1960, Moving envelopes of stars (Cambridge, Harvard University Press, 1960)Google Scholar
Unsöld, A., 1951, Naturwissenschaften, 38, 525 Google Scholar
Unsöld, A. 1955, Physik der Sternatmosphären (Berlin, Springer, 1955. 2. Aufl.)Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 1999, A&A, 350, 181 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2000, A&A, 362, 295 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2001, A&A, 369, 574 Google Scholar