Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 0.367 Render date: 2021-03-05T04:39:40.766Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Rapid rotation and mixing in active OB stars – Physical processes

Published online by Cambridge University Press:  12 July 2011

Jean-Paul Zahn
Affiliation:
LUTH, Observatoire de Paris, CNRS UMR 8102, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon, France email: Jean-Paul.Zahn@obspm.fr
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

In the standard description of stellar interiors, O and B stars possess a thoroughly mixed convective core surrounded by a stable radiative envelope in which no mixing occurs. But as is well known, this model disagrees strongly with the spectroscopic diagnostic of these stars, which reveals the presence at their surface of chemical elements that have been synthesized in the core. Hence the radiation zone must be the seat of some mild mixing mechanisms. The most likely to operate there are linked with the rotation: these are the shear instabilites triggered by the differential rotation, and the meridional circulation caused by the changes in the rotation profile accompanying the non-homologous evolution of the star. In addition to these hydrodynamical processes, magnetic stresses may play an important role in active stars, which host a magnetic field. These physical processes will be critically examined, together with some others that have been suggested.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bigot, L., Provost, J., Berthomieu, G., Dziembowski, W. A. et al. 2000, A&A, 356, 218Google Scholar
Braithwaite, J. 2006, A&A, 449, 451Google Scholar
Braithwaite, J. 2009, MNRAS, 397, 763CrossRefGoogle Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A, 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819CrossRefGoogle Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461CrossRefGoogle Scholar
Brun, A. S. & Zahn, J.-P. 2006, A&A, 457, 665Google Scholar
Busse, F. H. 1982, ApJ, 259, 759CrossRefGoogle Scholar
Cantiello, M., Langer, N., Brott, I., de Koter, A. et al. 2009, A&A, 499, 279Google Scholar
Chaboyer, B. & Zahn, J.-P. 1992, A&A, 253, 173Google Scholar
Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics (Oxford, Clarendon)Google Scholar
Charbonnel, C. & Talon, S. 2005, Science, 309, 2189CrossRefGoogle Scholar
Cowling, T. G. 1957, Magnetohydrodynamics (Interscience Publishers, Inc., New York)Google Scholar
Duez, V. & Mathis, S. 2010, A&A, 517A, 58Google Scholar
Dudis, J. J. 1974, Journal of Fluid Mechanics, 64, 65CrossRefGoogle Scholar
Eddington, A. S. 1925, Observatory, 48, 73Google Scholar
Ferraro, V. C. A. 1937, MNRAS, 97, 458CrossRefGoogle Scholar
Gough, D. O. & McIntyre, M. E. 1998, Nature, 394, 755CrossRefGoogle Scholar
Hasan, S. S., Zahn, J.-P., & Christensen-Dalsgaard, J. 2005, A&A, 444, L29Google Scholar
Herrero, A., Kudritzki, R. P., Vilchez, J. M., Kunze, D. et al. 1992, A&A, 261, 209Google Scholar
Hunter, I., Brott, I., Lennon, D. J., Langer, N. et al. 2008, ApJ (Letters), 676, 29CrossRefGoogle Scholar
Maeder, A. 2003, A&A, 399, 263Google Scholar
Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2009, Communications in Asteroseismology, 158, 72Google Scholar
Maeder, A. & Meynet, G. 2000, ARAA, 38, 143CrossRefGoogle Scholar
Maeder, A. & Zahn, J.-P. 1998, A&A, 334, 1000Google Scholar
Mathis, S., Palacios, A., & Zahn, J.-P. 2004, A&A, 425, 243Google Scholar
Mathis, S. & Zahn, J.-P. 2004, A&A, 425, 229Google Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A, 440, 653Google Scholar
Mestel, L. 1999, Stellar Magnetism, International series of monographs on physics (Oxford, Clarendon)Google Scholar
Meynet, G. & Maeder, A. 1997, A&A, 321, 465Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Michaud, G. 1970, ApJ, 160, 641CrossRefGoogle Scholar
Richer, J., Michaud, G., & Turcotte, S. 2000, ApJ, 529, 338CrossRefGoogle Scholar
Owocki, S. P. & ud-Doula, A. 2004, ApJ, 600, 1004CrossRefGoogle Scholar
Parker, E. N. 1955, ApJ, 122, 293CrossRefGoogle Scholar
Parker, E. N. 1958, ApJ, 128, 664CrossRefGoogle Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ, 338, 424CrossRefGoogle Scholar
Pitts, E. & Tayler, R. J. 1985, MNRAS, 216, 139CrossRefGoogle Scholar
Power, J., Wade, G. A., Aurière, M., Silvester, J. et al. 2008, Contributions of the Astronomical Observatory Skalnate Pleso, 38, 443Google Scholar
Schatzman, E. 1962, Annales d'Astrophysique, 25, 18Google Scholar
Spruit, H. C. 1999, A&A, 349, 189Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Sweet, P. A. 1950, MNRAS, 110, 548CrossRefGoogle Scholar
Talon, S. & Charbonnel, C. 2003, A&A, 405, 1025Google Scholar
Talon, S. & Zahn, J.-P. 1997, A&A, 317, 749Google Scholar
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A, 322, 209Google Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ, 576, 413CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS, 385, 97CrossRefGoogle Scholar
ud-Doula, A., Townsend, R. H. D., & Owocki, S. P. 2006, ApJ (Letters), 640, L191CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Michaud, G. 1978, ApJ, 223, 920CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Pamjatnikh, A. 1974, A&A, 31, 63Google Scholar
Vogt, H. 1925, AN, 223, 229Google Scholar
Wade, G. A., Silvester, J., Bale, K., Johnson, N. et al. 2009, in: Berdyugina, S. V., Nagendra, K. N., & Ramelli, R. (eds.), Stellar pulsation: challenges for theory and observation, ASP-CS 405, p. 499Google Scholar
Zahn, J.-P. 1974, in: Ledoux, P., Noels, A., & Rodgers, A. W. (eds.), Stellar Instability and Evolution, IAU Symposium 59, p. 185Google Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 65 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rapid rotation and mixing in active OB stars – Physical processes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rapid rotation and mixing in active OB stars – Physical processes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rapid rotation and mixing in active OB stars – Physical processes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *