Skip to main content Accessibility help
×
Home

Prototype-based Models for the Supervised Learning of Classification Schemes

  • Michael Biehl (a1), Barbara Hammer (a2) and Thomas Villmann (a3)

Abstract

An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prototype-based Models for the Supervised Learning of Classification Schemes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prototype-based Models for the Supervised Learning of Classification Schemes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prototype-based Models for the Supervised Learning of Classification Schemes
      Available formats
      ×

Copyright

References

Hide All
Hastie, T., Tibshirani, R. & Friedman, J. 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin: Springer
Kohonen, T. 1990, Self-Organizing Maps. Berlin: Springer
Martinetz, T., Berkovich, S. & Schulten, K. 1993 IEEE Trans. Neural Networks, 4, 558569.
Biehl, M., Hammer, B., Verleysen, M., & Villmann, T. (eds.) 2009, Similiarity based clustering. Berlin: Springer, Lecture Notes in Artificial Intelligence 5400
Biehl, M., Hammer, B., & Villmann, T. 2016, Wiley Interdisciplinary Reviews: Cognitive Science, 7 (2), 92111
Cover, T. & Hart, P. 1967, IEEE Trans. Information Theory, 13, 2127
Duda, R., Hart, P., & Stork, D. 2001, Pattern Classification. Hoboken, NJ: Wiley
Hart, P. 1968, IEEE Trans. Information Theory, 14, 515516
Nova, D. & Estévez, P. A. 2014, Neural Computing and Appl., 25, 11524
Robbins, H. & Monro, S. 1951, The Ann. of Math. Statistics, 22, 405
Kohonen, T. 1990, In: Proc. Int. Joint Conf. on Neural Networks, Vol. 1, 545550
Seo, S., Bode, M., & Obermayer, K. 2003, IEEE Trans. Neural Networks, 14, 390–398
Sato, A. & Yamada, K. 1996, In: Touretzky, D.S. & Hasselmo, M.E. (eds.), Proc. Adv. in Neural Proc. Information Processing Systems 8. Cambridge, MA: MIT Press, 423429
Bottou, L. 1998, In: Saad, D. (ed.), Online Learning and Neural Networks. New York: Cambridge Univ. Press, 942
Sra, S., Nowozin, S., & Wright, S. (eds.) 2011, Optimization for Machine Learning. Cambridge, MA: MIT Press
Hammer, B. & Villmann, T. 2005, In: Verleysen, M. (ed.) Proc. Europ. Symp. on Artificial Neural Networks. Evere: d-side publishing, 303316
Biehl, M., Hammer, B. & Villmann, T. 2014 In: Grandinetti, L., Lippert, T. & Petkov, N. (eds.), Proc. BrainComp2013. Berlin: Springer, Lecture Notes in Computer Science 8603, 110116
Mahalonobis, P. 1936, In: Proc. of the National Inst. of Sciences of India, 2, 4955
Schölkopf, B. 2001, In: Proc. Adv. in neural information processing systems, 301307.
Biehl, M., Breitling, R., & Li, Y. 2007, In: Yin, H., Tino, P., Corchado, E., Byrne, W. & Yao, X. (eds.), Proc. Intelligent Data Engineering and Automated Learning, IDEAL. Berlin: Springer, Lecture Notes in Computer Science 4881, 880889.
Golubitsky, O. & Watt, S. 2010, Int. J. on Document Analysis and Recognition (IJDAR), 13, 133146
Shawe-Taylor, J. & Cristianini, N. 2004, Kernel Methods for Pattern Analysis. New York: Cambridge University Press
Schölkopf, B. & Smola, A. 2002, Learning with Kernels. Cambridge, MA: MIT Press
Villmann, T., Kästner, M., Nebel, D., & Riedel, M. 2012, In: Proc. of the International Conference on Machine Learning Applications (ICMLA). New York: IEEE, 710
Cichocki, A., Zdunek, R., Phan, A., & Amari, S. 2009, Nonnegative Matrix and Tensor Factorizations. Hoboken, NJ: Wiley
Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J., Quinn, J., Haase, S., Villmann, T., & Biehl, M. 2011, Neurocomputing, 74, 14291435
Lange, M. & Villmann, T. 2013, Machine Learning Reports, MLR-03-2013
Hammer, B. & Villmann, T. 2002, Neural Networks, 15 (8), 10591068
Schneider, P., Biehl, M., & Hammer, B. 2009, Neural Computation, 21, 3532–3561
Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., & Biehl, M. 2010, IEEE Trans. Neural Networks, 21, 831840
Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., & Biehl, M. 2012, Neural Networks, 26, 159173
Biehl, M., Bunte, K., & Schneider, P. 2013, PLOS ONE, 8, e59401
Arlt, W., Biehl, M., Taylor, A., Hahner, S., Libe, R., Hughes, B., Schneider, P., Smith, D., Stiekema, H., Krone, N., Porfiri, E., Opocher, G., Bertherat, J., Mantero, F., Allolio, B., Terzolo, M., Nightingale, P., Shackleton, C., Bertagna, X., Fassnacht, M., & Stewart, P. 2011, J. Clinical Endocrinology and Metabolism, 44, 18921902
Biehl, M., Schneider, P., Smith, D., Stiekema, H., Taylor, A., Hughes, B., Shackleton, C., Stewart, P. & Arlt, W. 2012 In: Verleysen, M. (ed.) Proc. Europ. Symp. on Artificial Neural Networks (ESANN). Evere: d-side publishing, 423428
Leo, Y., Adlard, N., Biehl, M., Juarez, M., Samllie, T., Snow, M., Buckley, C. D., Raza, K., Filer, A., & Scheel-Toellner, D. 2016, Ann. of the Rheumatic Disease, 75, 763771
Denecke, A., Wersing, H., Steil, J., & Körner, E. 2009, Neurocomputing, 72, 14701482
Weinberger, K. & Saul, L. 2009, J. of Machine Learning Res., 10, 207244
Backhaus, A., Ashok, P., Praveen, B., Dholakia, K., & Seiffert, U. 2012, In: Verleysen, M. (ed.) Proc. Europ. Symp. on Artificial Neural Networks. Evere: d-side publishing, 411416
Boareto, M., Cesar, J., Leite, V., & Caticha, N. 2015, IEEE/ACM Trans. Computational Biology and Bioinformatics, 12 (3), 705711
Biehl, M., Hammer, B., Schleif, F.-M., Schneider, P., & Villmann, T. 2015, Proc. Int. Joint Conf. Neural Networks. New York: IEEE, 8 pages
Biehl, M. 2014, website: http://www.cs.rug.nl/~biehl/gmlvq
Fisher, R. 1936, Annual Eugenics, 7, 179188
Lichman, M. 2013, UCI machine learning repository, website: http://archive.ics.uci.edu/ml.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Prototype-based Models for the Supervised Learning of Classification Schemes

  • Michael Biehl (a1), Barbara Hammer (a2) and Thomas Villmann (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed