Skip to main content Accessibility help
×
Home

Probing the evolution of Active Galactic Nuclei using the narrow iron Kα line

  • Claudio Ricci (a1), S. Paltani (a1), Y. Ueda (a1), H. Awaki (a1), P. Petrucci (a1), K. Ichikawa (a1) and M. Brightman (a1)...

Abstract

A large fraction of the AGN output power is emitted in the X-rays, in a region very close to the supermassive black hole (SMBH). The most distinctive feature of the X-ray spectra of AGN is the iron Kα line, often observed as the superposition of a broad and a narrow component. While the broad component is found in only ~ 35–45% of bright nearby AGN, the narrow component has been found to be ubiquitous. The narrow Fe Kα line is thought to be produced in the circumnuclear material, likely in the molecular torus. Given its origin, this feature is possibly the most important tracer of neutral matter surrounding the SMBH. One of the most interesting characteristics of the narrow Fe Kα line is the decrease of its equivalent width with the continuum luminosity, the so-called X-ray Baldwin effect (Iwasawa & Taniguchi 1993). This trend has been found by many studies of large samples of type-I AGN, and very recently also in type-II AGN (Ricci et al. 2013c, submitted to ApJ). The slope of the X-ray Baldwin effect in type-II AGN is the same of their unobscured counterparts, which implies that the mechanism at work is the same. Several hypothesis have been put forward in the last decade to explain the X-ray Baldwin effect: i) a luminosity-dependent variation in the ionisation state of the iron-emitting material (Nandra et al. 1997); ii) the decrease of the number of continuum photons in the iron line region with the Eddington ratio, as an effect of the well known correlation between the photon index and the Eddington ratio (Ricci et al. 2013b, submitted to MNRAS); iii) the decrease of the covering factor of the torus with the luminosity (e.g., Page et al. 2004, Ricci et al. 2013a A&A 553, 29) as expected by luminosity-dependent unification models (e.g., Ueda et al. 2003). In my talk I will review the main characteristics of the narrow Fe K? line, and present the results of our recent works aimed at explaining the X-ray Baldwin effect using iron-line emitting physical torus models (Ricci et al. 2013a, b), and at understanding the origin of the Fe K? line (Ricci et al. 2013c). I will focus in particular on the importance of the Fe Kα line as a probe of the evolution of the physical characteristics of the molecular torus with the luminosity.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Probing the evolution of Active Galactic Nuclei using the narrow iron Kα line
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Probing the evolution of Active Galactic Nuclei using the narrow iron Kα line
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Probing the evolution of Active Galactic Nuclei using the narrow iron Kα line
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Probing the evolution of Active Galactic Nuclei using the narrow iron Kα line

  • Claudio Ricci (a1), S. Paltani (a1), Y. Ueda (a1), H. Awaki (a1), P. Petrucci (a1), K. Ichikawa (a1) and M. Brightman (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed