Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:30:15.972Z Has data issue: false hasContentIssue false

Probing high-mass stellar evolutionary models with binary stars

Published online by Cambridge University Press:  23 January 2015

A. Tkachenko*
Affiliation:
Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium email: Andrew.Tkachenko@ster.kuleuven.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass discrepancy is one of the problems that is pending a solution in (massive) binary star research field. The problem is often solved by introducing an additional near core mixing into evolutionary models, which brings theoretical masses of individual stellar components into an agreement with the dynamical ones. In the present study, we perform a detailed analysis of two massive binary systems, V380 Cyg and σ Sco, to provide an independent, asteroseismic measurement of the overshoot parameter, and to test state-of-the-art stellar evolution models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aerts, C. 2013, EAS Publications Series 64, 323Google Scholar
Aerts, C., Thoul, A., Daszyńska, J., et al. 2003, Science 300, 1926Google Scholar
Aerts, C., Briquet, M., Degroote, P., et al. 2011, A&A 534, A98Google Scholar
Briquet, M., Morel, T., Thoul, A., et al. 2007, MNRAS 381, 1482Google Scholar
Briquet, M., Aerts, C., Baglin, A., et al. 2011, A&A 527, A112Google Scholar
Garcia, E. V., Stassun, K. G., Pavlovski, K., et al. 2014, AJ 148, 39Google Scholar
Guinan, E. F., Ribas, I., Fitzpatrick, E. L., et al. 2000, ApJ 544, 409Google Scholar
Hadrava, P. 1995, A&AS 114, 393Google Scholar
Herrero, A., Kudritzki, R. P., Vilchez, J. M., et al. 1992, A&A 261, 209Google Scholar
Hilditch, R. W. 2004, ASP Conference Series 318, 198Google Scholar
Hill, G. & Batten, A. H. 2004, A&A 141, 39Google Scholar
Ilijić, S., Hensberge, H., Pavlovski, K., & Freyhammer, L. M. 2004, ASP Conference Series 318, 111Google Scholar
Kubiak, M. 1980, AcA 30, 41Google Scholar
Mathias, P., Gillet, D., & Crowe, R. 1991, A&A 252, 245Google Scholar
North, J. R., Davis, J., Tuthill, P. G., et al. 2007, MNRAS 380, 1276CrossRefGoogle Scholar
Pavlovski, K., Tamajo, E., Koubský, P., et al. 2009, MNRAS 400, 791CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS 192, 3Google Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS 208, 4Google Scholar
Pigulski, A. 1992, A&A 261, 203Google Scholar
Piskunov, N. E. & Rice, J. B. 1993, PASP 105, 1415CrossRefGoogle Scholar
Raskin, G., van Winckel, H., Hensberge, H., et al. 2011, A&A 526, A69Google Scholar
Simon, K. P. & Sturm, E. 2009, A&A 281, 286Google Scholar
Southworth, J., Zima, W., Aerts, C., et al. 2011, MNRAS 414, 2413Google Scholar
Tkachenko, A., Aerts, C., Pavlovski, K., et al. 2012, MNRAS 424, L21Google Scholar
Tkachenko, A., Degroote, P., Aerts, C., et al. 2014a, MNRAS 438, 3093Google Scholar
Tkachenko, A., Aerts, C., Pavlovski, K., et al. 2014b, MNRAS 442, 616Google Scholar
Townsend, R. H. D. & Teitler, S. A. 2013, MNRAS 435, 3406CrossRefGoogle Scholar
Wilson, R. E. 1979, ApJ 234, 1054Google Scholar
Wilson, R. E. & Devinney, E. J. 1971, ApJ 166, 605Google Scholar