No CrossRef data available.
Published online by Cambridge University Press: 09 February 2017
Quasi-periodic oscillations (QPOs) are believed to be indirect evidence for black holes. Several authors have reported detections of QPOs from Sgr A*, the nucleus of our Galaxy, in infrared and X-ray wavelength during flare-ups. Miyoshi et al. (2011) reported a tentative detection of QPOs in the 43 GHz light curve of Sgr A* obtained with the Very Long Baseline Array (VLBA). To confirm their detection, we reanalysed their VLBA data very conservatively. The 43 GHz flux was calculated for every 15 seconds by assuming a two-dimensional Gaussian-shape spatial structure. The Lomb-Scargle periodogram of the 43 GHz flux just after a millimeter wave flare of Sgr A*, shows three apparent peaks at 10.2, 14.6 and 32.1 min. Two of them are barely consistent with the previously reported QPOs. Using the resonant oscillation model, we estimated the spin parameter of the Sgr A* black hole to be 0.56 assuming the mass of 4.3 × 106 M ⊙.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between 09th February 2017 - 3rd March 2021. This data will be updated every 24 hours.