Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-04T18:25:45.520Z Has data issue: false hasContentIssue false

Planets spinning up their host stars: a twist on the age-activity relationship

Published online by Cambridge University Press:  07 August 2014

K. Poppenhaeger
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, 02138 Cambridge, 02138 MA, USA email: kpoppenhaeger@cfa.harvard.edu
S. J. Wolk
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, 02138 Cambridge, 02138 MA, USA email: kpoppenhaeger@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a long-standing question in exoplanet research if Hot Jupiters can influence the magnetic activity of their host stars. While cool stars usually spin down with age and become inactive, an input of angular momentum through tidal interaction, as seen for example in close binaries, can preserve high activity levels over time. This may also be the case for cool stars hosting a Hot Jupiter. However, selection effects from planet detection methods often dominate the activity levels seen in samples of exoplanet host stars, and planet-induced, systematically enhanced stellar activity has not been detected unambiguously so far. We have developed an approach to identify planet-induced stellar spin-up avoiding the selection biases from planet detection, by using visual proper motion binaries in which only one of the stars possesses a Hot Jupiter. This approach immediately rids one of the ambiguities of detection biases: with two co-eval stars, the second star acts as a negative control. We present results from our ongoing observational campaign at X-ray wavelengths and in the optical, and present several outstanding systems which display significant age/activity discrepancies presumably caused by their Hot Jupiters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Albrecht, S., Winn, J. N., Johnson, J. A., et al. 2012, ApJ, 757, 18Google Scholar
Bourrier, V., Lecavelier des Etangs, A., Dupuy, H., et al. 2013, A&A, 551, A63Google Scholar
Cuntz, M., Saar, S. H., & Musielak, Z. E. 2000, ApJL, 533, L151Google Scholar
Damiani, F., Flaccomio, E., Micela, G., et al. 2004, ApJ, 608, 781Google Scholar
Engle, S. G. & Guinan, E. F. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 451, Astronomical Society of the Pacific Conference Series, ed. S. Qain, K. Leung, L. Zhu, & S. Kwok, 285Google Scholar
Hawley, S. L. & Feigelson, E. D. 1994, in Astronomical Society of the Pacific Conference Series, Vol. 64, Cool Stars, Stellar Systems, and the Sun, ed. J.-P. Caillault, 89Google Scholar
Jackson, A. P., Davis, T. A., & Wheatley, P. J. 2012, MNRAS, 422, 2024Google Scholar
Jeffries, R. D., Evans, P. A., Pye, J. P., & Briggs, K. R. 2006, MNRAS, 367, 781Google Scholar
Kashyap, V. L., Drake, J. J., & Saar, S. H. 2008, ApJ, 687, 1339Google Scholar
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., et al. 2010, A&A, 514, A72Google Scholar
Levesque, E. M., Leitherer, C., Ekstrom, S., Meynet, G., & Schaerer, D. 2012, ApJ, 751, 67CrossRefGoogle Scholar
Miller, B. P., Gallo, E., Wright, J. T., & Dupree, A. K. 2012, ApJ, 754, 137Google Scholar
Penz, T., Micela, G., & Lammer, H. 2008, A&A, 477, 309Google Scholar
Pillitteri, I., Wolk, S. J., Cohen, O., et al. 2010, ApJ, 722, 1216Google Scholar
Poppenhaeger, K., Günther, H. M., & Schmitt, J. H. M. M. 2012, Astronomische Nachrichten, 333, 26Google Scholar
Poppenhaeger, K., Robrade, J., & Schmitt, J. H. M. M. 2010, A&A, 515, A98Google Scholar
Poppenhaeger, K. & Schmitt, J. H. M. M. 2011, ApJ, 735, 59Google Scholar
Poppenhaeger, K., Schmitt, J. H. M. M., & Wolk, S. J. 2013, ApJ, 773, 62Google Scholar
Preibisch, T. & Feigelson, E. D. 2005, ApJS, 160, 390CrossRefGoogle Scholar
Schmitt, J. H. M. M. & Liefke, C. 2004, A&A, 417, 651Google Scholar
Schröter, S., Czesla, S., Wolter, U., et al. 2011, A&A, 532, A3+CrossRefGoogle Scholar
Shkolnik, E., Walker, G. A. H., Bohlender, D. A., Gu, P., & Kürster, M. 2005, ApJ, 622, 1075Google Scholar
Torres, G., Andersen, J., & Giménez, A. 2010, AARev, 18, 67Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J., et al. 2003, Nature, 422, 143Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., et al. 2012, MNRAS, 423, 3285Google Scholar
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, ApJL, 718, L145CrossRefGoogle Scholar
Wright, J. T., Marcy, G. W., Howard, A. W., et al. 2012, ApJ, 753, 160CrossRefGoogle Scholar
Zahn, J.-P. 2008, in EAS Publications Series, Vol. 29, EAS Publications Series, ed. M.-J. Goupil & J.-P. Zahn, 67–90Google Scholar