Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T22:35:52.426Z Has data issue: false hasContentIssue false

A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

Published online by Cambridge University Press:  27 October 2016

Tingting Liu
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742, USA email: tingting@astro.umd.edu
Suvi Gezari
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742, USA email: tingting@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ∼1010 M. The inferred ∼7 Rs binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Becker, R. H., White, R. L., Gregg, M. D., et al. 2001 ApJS, 135, 227 Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980 Nature, 287, 307 CrossRefGoogle Scholar
Bhatti, W. A., Richmond, M. W., Ford, H. C., & Petro, L. D. 2010 ApJS, 186, 233 Google Scholar
D'Orazio, D. J., Haiman, Z., & MacFadyen, A. 2013 MNRAS, 436, 2997 Google Scholar
Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009 ApJ, 696, 870 Google Scholar
Gold, R., Paschalidis, V., Etienne, Z. B., Shapiro, S. L., & Pfeiffer, H. P. 2014 Phys. Rev. D, 89, 064060 CrossRefGoogle Scholar
Haiman, Z., Kocsis, B., & Menou, K. 2009 ApJ, 700, 1952 CrossRefGoogle Scholar
Heinis, S., Gezari, S., Kumar, S. et al. 2015 ApJ, submittedGoogle Scholar
Honeycutt, R. K. 1992 PASP, 104, 435 Google Scholar
Horne, J. H., & Baliunas, S. L. 1986 ApJ, 302, 757 Google Scholar
Ivezic, Z., Tyson, J. A., Abel, B., et al. 2014 arXiv:0805.2366v4Google Scholar
Kaiser, N., Burgett, W., Chambers, K., et al. 2010 Proc. SPIE 4836 Survey and Other Telescope Technologies and Discoveries, 154 CrossRefGoogle Scholar
Liu, T., Gezari, S., Heinis, S., et al. 2015 ApJ, 803, L16 Google Scholar
Noble, S. C., Mundim, B. C., Nakano, H., et al. 2012 ApJ, 755, 51 Google Scholar