Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T15:08:53.257Z Has data issue: false hasContentIssue false

On the uniqueness of kinematical signatures of intermediate-mass black holes in globular clusters

Published online by Cambridge University Press:  07 March 2016

Alice Zocchi
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom email: a.zocchi@surrey.ac.uk
Mark Gieles
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom email: a.zocchi@surrey.ac.uk
Vincent Hénault-Brunet
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom email: a.zocchi@surrey.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Finding an intermediate-mass black hole (IMBH) in a globular cluster (GC), or proving its absence, is a crucial ingredient in our understanding of galaxy formation and evolution. The challenge is to identify a unique signature of an IMBH that cannot be accounted for by other processes. Observational claims of IMBH detection are often based on analyses of the kinematics of stars, such as a rise in the velocity dispersion profile towards the centre. In this contribution we discuss the degeneracy between this IMBH signal and pressure anisotropy in the GC. We show that that by considering anisotropic models it is possible to partially explain the innermost shape of the projected velocity dispersion profile, even though models that do not account for an IMBH do not exhibit a cusp in the centre.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bellazzini, M., Mucciarelli, A., Sollima, A., Catelan, M., Dalessandro, E., Correnti, M., D'Orazi, V., Cortés, C., & Amigo, P. 2015, MNRAS, 446, 3130CrossRefGoogle Scholar
Bellini, A., Anderson, J., van der Marel, R. P., Watkins, L. L., King, I. R., Bianchini, P., Chanamé, J., Chandar, R., Cool, A. M., Ferraro, F. R., Ford, H., & Massari, D. 2014, ApJ, 797, 115Google Scholar
Bertin, G. & Trenti, M. 2003, ApJ, 584, 729CrossRefGoogle Scholar
Bianchini, P., Varri, A. L., Bertin, G., & Zocchi, A. 2013, ApJ, 772, 67CrossRefGoogle Scholar
Ibata, R., Sollima, A., Nipoti, C., Bellazzini, M., Chapman, S. C., & Dalessandro, E. 2011, ApJ, 738, 186Google Scholar
King, I. R. 1966, AJ, 71, 64CrossRefGoogle Scholar
Lützgendorf, N., Kissler-Patig, M., Noyola, E., Jalali, B., de Zeeuw, P. T., Gebhardt, K., & Baumgardt, H. 2011, A&A, 533, 36Google Scholar
Michie, R. W. 1963, MNRAS, 125, 127CrossRefGoogle Scholar
Noyola, E., Gebhardt, K., & Bergmann, M. 2008, ApJ, 676, 1008CrossRefGoogle Scholar
Noyola, E., Gebhardt, K., Kissler-Patig, M., Lützgendorf, N., Jalali, B., de Zeeuw, P. T., & Baumgardt, H. 2010, ApJ, 719, L60Google Scholar
Polyachenko, V. L. & Shukhman, I. G. 1981, Soviet Astron., 25, 533Google Scholar
Trager, S. C., King, I. R., & Djorgovski, S. 1995, AJ, 109, 218Google Scholar
van der Marel, R. P. & Anderson, J. 2010, ApJ, 710, 1063Google Scholar
Vesperini, E. & Trenti, M. 2010, ApJ, 720, L179Google Scholar
Zocchi, A., Bertin, G., & Varri, A. L. 2012, A&A, 539, 65Google Scholar