Skip to main content Accessibility help
×
Home

Observations of Low-Mass Protostars: Cold Envelopes and Hot Corinos

  • Cecilia Ceccarelli (a1)

Abstract

Recent years have seen substantial progresses in our understanding of solar type protostellar structure, and particularly of the chemical structure of the protostellar envelopes. On the one hand, the cold outer regions keep intact the memory of the previous pre-collapse phase, when the dust is so cold and dense that almost all molecules freeze out onto the dust grain mantles. The gas-phase chemical composition undergoes dramatic changes, the most spectacular aspect of which is the huge increase of the molecular deuteration degree, which can reach 13 orders of magnitude with respect to the elemental D/H ratio. On the other hand, in the innermost regions of the envelope – the so-called hot corinos – the grain mantles evaporate when the dust temperatures exceed 100 K, injecting into the gas phase hydrogenated molecules, such as formaldehyde and methanol. Those molecules probably undergo chemical reactions that form more complex organic molecules, which have now also been observed in low-mass hot corinos. In this contribution, I review what we have and have not recently understood concerning both the cold envelopes and the hot corinos of solar-type protostars.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observations of Low-Mass Protostars: Cold Envelopes and Hot Corinos
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Observations of Low-Mass Protostars: Cold Envelopes and Hot Corinos
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Observations of Low-Mass Protostars: Cold Envelopes and Hot Corinos
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Observations of Low-Mass Protostars: Cold Envelopes and Hot Corinos

  • Cecilia Ceccarelli (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed