Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T13:08:18.407Z Has data issue: false hasContentIssue false

Nitrogen bearing species in massive star forming regions

Published online by Cambridge University Press:  12 October 2020

Zainab Awad
Affiliation:
Astronomy, Space Science & Meteorology Dept., Faculty of Science, Cairo University, Egypt emails: zma@sci.cu.edu.eg, shalabiea@sci.cu.edu.eg
Osama M. Shalabiea
Affiliation:
Astronomy, Space Science & Meteorology Dept., Faculty of Science, Cairo University, Egypt emails: zma@sci.cu.edu.eg, shalabiea@sci.cu.edu.eg
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations revealed that there is a difference in the spatial distribution of both nitrogen and oxygen bearing species towards massive star forming regions. These differences can be explained under different temperature regimes in hot cores. In this study, we attempt to model the chemistry of few nitrogen species; namely, vinyl cyanide (CH2CHCN), ethyl cyanide (CH3CH2CN), and formamide (NH2CHO), using gas-grain chemical models. A special attention is given to the role and efficiency of surface chemistry as it is suggested to play one of the main key roles in manufacturing these species.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Annu. Rev. Astron. Astrophys., 47, 481 CrossRefGoogle Scholar
Awad, Z., Viti, S., Collings, M. P., & Williams, D. A. 2010, MNRAS, 1006Google Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 913 Google Scholar
Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004, ApJL, 617, L69 CrossRefGoogle Scholar
Charnley, S. B., Ehrenfreund, P., Millar, T. J., et al. 2004, MNRAS, 347, 157 CrossRefGoogle Scholar
Collings, M. P., Anderson, M. A., Chen, R., et al. 2004, MNRAS, 354, 1133 CrossRefGoogle Scholar
Collings, M. P., Dever, J. W., Fraser, H. J., & McCoustra, M. R. S. 2003b, Ap&SS, 285, 633 Google Scholar
Fontani, F., Pascucci, I., Caselli, P., et al. 2007, A&A, 470, 639 Google Scholar
Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283 CrossRefGoogle Scholar
Herbst, E., & van Dishoeck, E. F. 2009, Annu. Rev. Astron. Astrophys., 47, 427 CrossRefGoogle Scholar
Holdship, J., Viti, S., Jiménez-Serra, I., Makrymallis, A., & Priestley, F. 2017, AJ, 154, arXiv:1705.10677Google Scholar
McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36 Google Scholar
Rawlings, J. M. C., Hartquist, T. W., Menten, K. M., & Williams, D. A. 1992, MNRAS, 255, 471 CrossRefGoogle Scholar
Roberts, J. F., Rawlings, J. M. C., Viti, S., & Williams, D. A. 2007, MNRAS, 382, 733 CrossRefGoogle Scholar
Shivani, Misra, A., & Tandon, P. 2014, Origins of Life and Evolution of the Biosphere, 44, 143 CrossRefGoogle Scholar
Suzuki, T., Ohishi, M., Hirota, T., et al. 2016, ApJ, 825, 79 CrossRefGoogle Scholar
Suzuki, T., Ohishi, M., Saito, M., et al. 2018, ApJS, 237, 3 CrossRefGoogle Scholar
Tielens, A. G. G. M. 2013, Rev. Mod. Phys., 85, 1021 CrossRefGoogle Scholar
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. 2004, MNRAS, 354, 1141 CrossRefGoogle Scholar
Wakelam, V., Loison, J.-C., Mereau, R., & Ruaud, M. 2017, Mol. Astrophys., 6, 22 Google Scholar
Wakelam, V., Loison, J.-C., Herbst, E., et al. 2015, ApJS, 217, 20 CrossRefGoogle Scholar
Watanabe, Y., Sakai, N., López-Sepulcre, A., et al. 2015, ApJ, 809, 162 CrossRefGoogle Scholar