Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T18:51:11.676Z Has data issue: false hasContentIssue false

New constraints on Lyman-α opacity using 92 quasar lines of sight

Published online by Cambridge University Press:  08 May 2018

Sarah E. I. Bosman
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K.
Xiaohui Fan
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721-0065, USA Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
Linhua Jiang
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
Sophie Reed
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K.
Yoshiki Matsuoka
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
George Becker
Affiliation:
Department of Physics & Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
Alberto Rorai
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The large scatter in Lyman-α opacity at z > 5.3 has been an ongoing mystery, prompting a flurry of numerical models. A uniform ultra-violet background has been ruled out at those redshifts, but it is unclear whether any proposed models produce sufficient inhomogeneities. In this paper we provide an update on the measurement which first highlighted the issue: Lyman-α effective optical depth along high-z quasar lines of sight. We nearly triple on the previous sample size in such a study thanks to the cooperation of the DES-VHS, SHELLQs, and SDSS collaborations as well as new reductions and spectra. We find that a uniform UVB model is ruled out at 5.1 < z < 5.3, as well as higher redshifts, which is perplexing. We provide the first such measurements at z ∼ 6. None of the numerical models we confronted to this data could reproduce the observed scatter.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Becker, G. D., Bolton, J. S., Madau, P., et al. 2015, MNRAS, 447, 3402Google Scholar
Bolton, & Haehnelt, 2007, MNRAS, 382, 325CrossRefGoogle Scholar
Bolton, J. S., Puchwein, E., Sijacki, D., et al. 2017, MNRAS, 464, 897CrossRefGoogle Scholar
Bosman, S. E. I. & Becker, G. D., 2015, MNRAS, 452, 1105Google Scholar
Bosman, S. E. I., Becker, G. D., Haehnelt, M. G., et al. 2017, MNRAS, 470, 1919CrossRefGoogle Scholar
Chardin, J., Haehnelt, M. G., Aubert, D., & Puchwein, E., 2015, MNRAS, 453, 2943Google Scholar
Chardin, J., Haehnelt, M. G., Bosman, S. E. I. & Puchwein, E. 2017, arXiv:1707.03841Google Scholar
D'Aloisio, A., McQuinn, M., & Trac, H., 2015, ApJL, 813, L38Google Scholar
Davies, F. B. & Furlanetto, S. R., 2016, MNRAS, 460, 1328Google Scholar
Davies, F. B., Becker, G. D. & Furlanetto, S. R. 2017, arXiv:1708.08927Google Scholar
Eilers, A.-C., Davies, F. B., Hennawi, J. F., et al. 2017, APJ, 840, 24Google Scholar
Fan, X., Narayanan, V. K., Lupton, R. H., et al. 2001, AJ, 122, 2833CrossRefGoogle Scholar
Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, AJ, 132, 117Google Scholar
Greig, B., Mesinger, A., Haiman, Z., & Simcoe, R. A., 2017, MNRAS, 466, 4239Google Scholar
Keating, L. C., Puchwein, E., Haehnelt, M. G., Bird, S., & Bolton, J. S., 2016, MNRAS, 461, 606Google Scholar
Keating, L. C., Puchwein, E. & Haehnelt, M. G. 2017, arXiv:1709.05351Google Scholar
Lidz, A., Oh, S. P., & Furlanetto, S. R., 2006, ApJL, 639, L47Google Scholar
McGreer, I. D., Mesinger, A., & D’Odorico, V., 2015, MNRAS, 447, 499Google Scholar
Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, Nature, 474, 616Google Scholar
Simcoe, R. A., Cooksey, K. L., Matejek, M., et al. 2011, APJ, 743, 21CrossRefGoogle Scholar