Skip to main content Accessibility help
×
Home

Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks

  • C. Pinte (a1) (a2), F. Ménard (a2), G. Duchěne (a2) (a3) and J. C. Augereau (a2)

Extract

A wide range of high-quality data is becoming available for protoplanetary disks. From these data sets many issues have already been addressed, such as constraining the large scale geometry of disks, finding evidence of dust grain evolution, as well as constraining the kinematics and physico-chemical conditions of the gas phase. Most of these results are based on models that emphasise fitting observations of either the dust component (SEDs or scattered light images or, more recently, interferometric visibilities), or the gas phase (resolved maps in molecular lines). In this contribution, we present a more global approach which aims at interpreting consistently the increasing amount of observational data in the framework of a single model, in order to to better characterize both the dust population and the gas disk properties, as well as their interactions. We present results of such modeling applied to a few disks (e.g. IM Lup, see Figure) with large observational data-sets available (scattered light images, polarisation maps, IR spectroscopy, X-ray spectrum, CO maps). These kinds of multi-wavelengths studies will become very powerful in the context of forthcoming instruments such as Herschel and ALMA.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks

  • C. Pinte (a1) (a2), F. Ménard (a2), G. Duchěne (a2) (a3) and J. C. Augereau (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.