Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:49:49.083Z Has data issue: false hasContentIssue false

The molecular emission from old supernova remnants

Published online by Cambridge University Press:  29 January 2014

A. Gusdorf
Affiliation:
LERMA, UMR 8112 du CNRS, Observatoire de Paris, École Normale Supérieure, 24 rue Lhomond, F75231 Paris Cedex 05, France, email: antoine.gusdorf@lra.ens.fr
R. Güsten
Affiliation:
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
S. Anderl
Affiliation:
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
T. Hezareh
Affiliation:
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
H. Wiesemeyer
Affiliation:
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae constitute a critical source of energy input to the interstellar medium (ISM). In this short review, we focus on their latest phase of evolution, the supernova remnants (SNRs). We present observations of three old SNRs that have reached the phase where they interact with the ambient interstellar medium: W28, IC443, and 3C391. We show that such objects make up clean laboratories to constrain the physical and chemical processes at work in molecular shock environments. Our studies subsequently allow us to quantify the impact of SNRs on their environment in terms of mass, momentum, and energy dissipation. In turn, their contribution to the energy balance of galaxies can be assessed. Their potential to trigger a further generation of star formation can also be investigated. Finally, our studies provide strong support for the interpretation of γ-ray emission in SNRs, a crucial step to answer questions related to cosmic rays population and acceleration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Blandford, R. & Eichler, D. 1987, PR, 154, 1Google Scholar
Bykov, A. M., Chevalier, R. A., Ellison, D. C., & Uvarov, Y. A. 2000, ApJ, 538, 203Google Scholar
Claussen, M. J., Frail, D. A., Goss, W. M., & Gaume, R. A. 1997, ApJ, 489, 143Google Scholar
Frail, D. A. & Mitchell, G. F. 1998, ApJ, 508, 690Google Scholar
Frail, D. A. 2011, MemSAIt, 82, 703Google Scholar
Gabici, S., Aharonian, F. A., & Casanova, S. 2009, MNRAS, 396, 1629CrossRefGoogle Scholar
Giuliani, A., Tavani, M., Bulgarelli, A., et al. 2010, A&A, 516, L11Google Scholar
Gusdorf, A., Giannini, T., Flower, D. R., et al. 2011, A&A, 532, A53Google Scholar
Gusdorf, A., Anderl, S., Güsten, R., et al. 2012, A&A, 542, L19Google Scholar
Hailey-Dunsheath, S., Sturm, E., Fischer, J., et al. 2012, ApJ, 755, 57CrossRefGoogle Scholar
Hoffman, I. M., Goss, W. M., Brogan, C. L., & Claussen, M. J. 2005, ApJ, 620, 257CrossRefGoogle Scholar
Lee, J.-J., Koo, b.-C., Snell, R. L., et al. 2012, ApJ, 749, 34Google Scholar
Lockett, P., Gauthier, E., & Elitzur, M. 1999, ApJ, 511, 235CrossRefGoogle Scholar
Moffett, D. A. & Reynolds, S. P. 1994, ApJ, 425, 668CrossRefGoogle Scholar
Neufeld, D. A., Hollenbach, D. J., Kaufman, M. J., et al. 2007, ApJ, 664, 890Google Scholar
Weiler, K. W. & Sramek, R. A. 1988, ARAA, 26, 295Google Scholar
Woltjer, L. 1972, ARAA, 10, 129Google Scholar
Xu, J.-L., Wang, J.-J., & Miller, M. 2011, ApJ, 727, 81Google Scholar