Skip to main content Accessibility help
×
Home

Modeling High-Mass Star Formation and Ultracompact H ii Regions

  • Ralf S. Klessen (a1), Thomas Peters (a1), Robi Banerjee (a1), Mordecai-Mark Mac Low (a2), Roberto Galván-Madrid (a3) (a4) and Eric R. Keto (a3)...

Abstract

Massive stars influence the surrounding universe far out of proportion to their numbers through ionizing radiation, supernova explosions, and heavy element production. Their formation requires the collapse of massive interstellar gas clouds with very high accretion rates. We discuss results from the first three-dimensional simulations of the gravitational collapse of a massive, rotating molecular cloud core that include heating by both non-ionizing and ionizing radiation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars. These lower-mass companions subsequently compete with the high-mass star for the same common gas reservoir and limit its overall mass growth. This process is called fragmentation-induced starvation, and explains why massive stars are usually found as members of high-order stellar systems. These simulations also show that the H ii regions forming around massive stars are initially trapped by the infalling gas, but soon begin to fluctuate rapidly. Over time, the same ultracompact H ii region can expand anisotropically, contract again, and take on any of the observed morphological classes. The total lifetime of H ii regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This solves the so-called lifetime problem of ultracompact H ii region. We conclude that the the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable flow.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modeling High-Mass Star Formation and Ultracompact H ii Regions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modeling High-Mass Star Formation and Ultracompact H ii Regions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modeling High-Mass Star Formation and Ultracompact H ii Regions
      Available formats
      ×

Copyright

References

Hide All
Bate, M. R. 2000, Mon. Not. R. Astron. Soc., 314, 33
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001 a, Mon. Not. R. Astron. Soc., 323, 785
Bonnell, I. A., Vine, S. G., & Bate, M. R. 2004, Mon. Not. R. Astron. Soc., 349, 735
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, Astrophys. J., 713, 269
Franco-Hernández, R. & Rodríguez, L. F. 2004, Astrophys. J., 604, L105
Fryxell, B., Olson, K., Ricker, P., et al. 2000, Astrophys. J. Suppl. Ser., 131, 273
Galván-Madrid, R., Rodríguez, L. F., Ho, P. T. P., & Keto, E. 2008, Astrophys. J., 674, L33
Ho, P. T. P. & Haschick, A. D. 1981, Astrophys. J., 248, 622
Hosokawa, T. & Omukai, K. 2009, Astrophys. J., 691, 823
Kahn, F. D. 1974, Astron. Astrophys., 37, 149
Keto, E. 2002, Astrophys. J., 580, 980
Keto, E. 2003, Astrophys. J., 599, 1196
Keto, E. 2007, Astrophys. J., 666, 976
Keto, E. & Klaassen, P. 2008, Astrophys. J., 678, L109
Keto, E. & Wood, K. 2006, Astrophys. J., 637, 850
Kim, K.-T. & Koo, B.-C. 2001, Astrophys. J., 549, 979
Klessen, R. S. 2001, Astrophys. J., 556, 837
Klessen, R. S. & Burkert, A. 2000, Astrophys. J. Suppl. Ser., 128, 287
Klessen, R. S. & Burkert, A. 2001, Astrophys. J., 549, 386
Kratter, K. M. & Matzner, C. D. 2006, Mon. Not. R. Astron. Soc., 373, 1563
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2007, Astrophys. J., 656, 959
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham, A. J. 2009, Science, 323, 754
Kurtz, S., Churchwell, E., & Wood, D. O. S. 1994, Astrophys. J. Suppl. Ser., 91, 659
Larson, R. B. & Starrfield, S. 1971, Astron. Astrophys., 13, 190
Motte, F., Bontemps, S., Schneider, N., Schilke, P., & Menten, K. M. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 387, Massive Star Formation: Observations Confront Theory, ed. Beuther, H., Linz, H., & Henning, T., 22–29
Myers, P. C., Dame, T. M., Thaddeus, P., et al. 1986, Astrophys. J., 301, 398
Nakano, T., Hasegawa, T., & Norman, C. 1995, Astrophys. J., 450, 183
Paxton, B. 2004, Publ. Astron. Soc. Pac., 116, 699
Peters, T., Banerjee, R., Klessen, R. S., Mac Low, M.-M., Galván-Madrid, R., & Keto, E. R. 2010 a, Astrophys. J., 711, 1017
Peters, T., Mac Low, M.-M., Banerjee, R., Klessen, R. S., & Dullemond, C. P. 2010 b, Astrophys. J., in press
Peters, T., Klessen, R. S., Banerjee, R. & Mac Low, M.-M. 2010 c, Astrophys. J., submitted
Rijkhorst, E.-J., Plewa, T., Dubey, A., & Mellema, G. 2006, Astron. Astrophys., 452, 907
Rodríguez, L. F., Gómez, Y., & Tafoya, D. 2007, Astrophys. J., 663, 1083
Sigalotti, L. D. G., de Felice, F., & Daza-Montero, J. 2009, Astrophys. J., 707, 1438
Wolfire, M. G. & Cassinelli, J. P. 1987, Astrophys. J., 319, 850
Wood, D. O. S. & Churchwell, E. 1989, Astrophys. J. Suppl. Ser., 69, 831
Yorke, H. W. & Krügel, E. 1977, Astron. Astrophys., 54, 183
Yorke, H. W. & Sonnhalter, C. 2002, Astrophys. J., 569, 846
Zhang, Q., Ho, P. T. P., & Ohashi, N. 1998, Astrophys. J., 494, 636
Zinnecker, H. & Yorke, H. W. 2007, Ann. Rev. Astron. Astrophys., 45, 481
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Modeling High-Mass Star Formation and Ultracompact H ii Regions

  • Ralf S. Klessen (a1), Thomas Peters (a1), Robi Banerjee (a1), Mordecai-Mark Mac Low (a2), Roberto Galván-Madrid (a3) (a4) and Eric R. Keto (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed