Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T06:30:18.731Z Has data issue: false hasContentIssue false

Millisecond Pulsars in the Galactic Bulge? An Extended Discussion on the Wavelet Analysis of the Fermi-LAT data

Published online by Cambridge University Press:  09 February 2017

Richard Bartels
Affiliation:
GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands email: r.t.bartels@uva.nl and c.weniger@uva.nl
Christoph Weniger
Affiliation:
GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands email: r.t.bartels@uva.nl and c.weniger@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A clear excess in the Fermi-LAT data is present at energies around a few GeV. The spectrum of this so-called ’GeV excess’ is remarkably similar to the expected annihilation signal of WIMP dark matter. However, a large bulge population of millisecond pulsars living below the Fermi–LAT detection threshold could also explain the excess spectrum. In a recent work we optimized the search for sub-threshold sources, by applying a wavelet transform to the Fermi–LAT gamma-ray data. In the Inner-Galaxy the wavelet signal is significantly enhanced, providing supportive evidence for the point source interpretation of the excess. In these proceedings we will extent our previous work with a spectral analysis and elaborate on the potential contamination from substructures in the gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abergel, A. et al. 2014, A&A, 571, A11 Google Scholar
Ajello, M. et al. 2016, ApJ, 819, 44 CrossRefGoogle Scholar
Bartels, R., Krishnamurthy, S., & Weniger, C. 2016, Phys. Rev. Lett., 116, 051102 Google Scholar
Calore, F., Cholis, I., & Weniger, C. 2015, JCAP, 1503, 038 CrossRefGoogle Scholar
Calore, F., Di Mauro, M., Donato, F., & Hessels, J. W. T. and Weniger, C. 2016, ApJ., 827, 143 CrossRefGoogle Scholar
Carlson, E., Linden, T., & Profumo, S. 2016, Phys. Rev. Lett., 117, 111101 Google Scholar
Cholis, I., Hooper, D., & Linden, T. 2014, arXiv:1407.5583Google Scholar
Daylan, T., Finkbeiner, D. P., Hooper, D., Linden, T., Portillo, S. K. N., Rodd, N. L., & Slatyer, T. R. 2016, Phys. Dark Univ. 12 123 CrossRefGoogle Scholar
Eatough, R. P. et al. 2013, Nature 501 391394 Google Scholar
Gaggero, D., Taoso, M., Urbano, A., Valli, M., & Ullio, P. 2015, JCAP, 1512, 056 Google Scholar
Goodenough, L. & Hooper, D. 2009, arXiv:0910.2998Google Scholar
Lee, S. K., Lisanti, M., Safdi, B. R., Slatyer, T. R., & Xue, W. 2016, Phys. Rev. Lett., 116, 051103 Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Google Scholar