Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-26T00:52:53.738Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Metallicity Gradients in the Halos of Elliptical Galaxies

Published online by Cambridge University Press:  09 May 2016

Jenny E. Greene
Affiliation:
Department of Astrophysics, Princeton University, Princeton, NJ 08544, USA
Chung-Pei Ma
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720, USA
Andrew Goulding
Affiliation:
Department of Astrophysics, Princeton University, Princeton, NJ 08544, USA
Nicholas J. McConnell
Affiliation:
Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada
John P. Blakeslee
Affiliation:
Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada
Timothy Davis
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
Jens Thomas
Affiliation:
Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the stellar halos of massive elliptical galaxies, as revealed by our ambitious integral-field spectroscopic survey MASSIVE. We show that metallicity drops smoothly as a function of radius out to ~ 2.5 Re, while the [α/Fe] abundance ratios stay flat. The stars in the outskirts likely formed rapidly (to explain the high ratio of alpha to Fe) but in a relatively shallow potential (to explain the low metallicities). This is consistent with expectations for a two-phase growth of massive galaxies, in which the second phase involves accretion of small satellites. We also show some preliminary study of the gas content of these most MASSIVE galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arnold, J. A., Romanowsky, A. J., Brodie, J. P., Forbes, D. A., Strader, J., Spitler, L. R., Foster, C., Blom, C., Kartha, S. S., Pastorello, N., Pota, V., Usher, C., & Woodley, K. A. 2014, ApJ, 791, 80CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Krajnović, D., McDermid, R. M., Serra, P., Alatalo, K., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Khochfar, S., Kuntschner, H., Lablanche, P.-Y., Morganti, R., Naab, T., Oosterloo, T., Sarzi, M., Scott, N., Weijmans, A.-M., & Young, L. M. 2011, MNRAS, 416, 1680CrossRefGoogle Scholar
Carollo, C. M., & Danziger, I. J. 1994, MNRAS, 270, 743CrossRefGoogle Scholar
Carollo, C. M., Danziger, I. J., & Buson, L. 1993, MNRAS, 265, 553CrossRefGoogle Scholar
Crnojević, D., Ferguson, A. M. N., Irwin, M. J., Bernard, E. J., Arimoto, N., Jablonka, P., & Kobayashi, C. 2013, MNRAS, 432, 832CrossRefGoogle Scholar
Crook, A. C., Huchra, J. P., Martimbeau, N., Masters, K. L., Jarrett, T., & Macri, L. M. 2007, ApJ, 655, 790CrossRefGoogle Scholar
Davis, T. A., et al. 2011, MNRAS, 417, 882CrossRefGoogle Scholar
D'Souza, R., Kauffman, G., Wang, J., & Vegetti, S. 2014, MNRAS, 443, 1433CrossRefGoogle Scholar
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668CrossRefGoogle Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009, ApJ, 693, 486CrossRefGoogle Scholar
Greene, J. E., Janish, R., Ma, C.-P., McConnell, N. J., Blakeslee, J. P., Thomas, J., & Murphy, J. D. 2015, ApJ, 807, 11CrossRefGoogle Scholar
Greene, J. E., Murphy, J. D., Graves, G. J., Gunn, J. E., Raskutti, S., Comerford, J. M., & Gebhardt, K. 2013, ApJ, 776, 64CrossRefGoogle Scholar
Harris, G. L. H., Harris, W. E., & Poole, G. B. 1999, AJ, 117, 855CrossRefGoogle Scholar
Harris, W. E., Harris, G. L. H., Layden, A. C., & Wehner, E. M. H. 2007, ApJ, 666, 903CrossRefGoogle Scholar
Hill, G. J., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference SeriesGoogle Scholar
Hirschmann, M., Naab, T., Ostriker, J. P., Forbes, D. A., Duc, P.-A., Davé, R., Oser, L., & Karabal, E. 2015, MNRAS, 449, 528CrossRefGoogle Scholar
Kalirai, J. S., et al. 2006, ApJ, 648, 389CrossRefGoogle Scholar
Kelson, D. D., Illingworth, G. D., Franx, M., & van Dokkum, P. G. 2006, ApJ, 653, 159CrossRefGoogle Scholar
Kim, D.-W., & Fabbiano, G. 2015, ApJ, accepted (arXiv:1504.00899)Google Scholar
Knapp, G. R., Guhathakurta, P., Kim, D.-W., & Jura, M. A. 1989, ApJS, 70, 329CrossRefGoogle Scholar
Kobayashi, C. 2004, MNRAS, 347, 740CrossRefGoogle Scholar
Ma, C.-P., Greene, J. E., McConnell, N., Janish, R., Blakeslee, J. P., Thomas, J., & Murphy, J. D. 2014, ApJ, 795, 158CrossRefGoogle Scholar
Mehlert, D., Thomas, D., Saglia, R. P., Bender, R., & Wegner, G. 2003, A&A, 407, 423Google Scholar
Murphy, J. D., Gebhardt, K., & Adams, J. J. 2011, ApJ, 729, 129CrossRefGoogle Scholar
Naab, T., Oser, L., Emsellem, E., Cappellari, M., Krajnović, D., McDermid, R. M., Alatalo, K., Bayet, E., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Crocker, A., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Hirschmann, M., Johansson, P. H., Khochfar, S., Kuntschner, H., Morganti, R., Oosterloo, T., Sarzi, M., Scott, N., Serra, P., Ven, G. v. d., Weijmans, A., & Young, L. M. 2014, MNRAS, 444, 3357CrossRefGoogle Scholar
Negri, A., Ciotti, L., & Pellegrini, S. 2014, MNRAS, 439, 823CrossRefGoogle Scholar
Pastorello, N., Forbes, D. A., Foster, C., Brodie, J. P., Usher, C., Romanowsky, A. J., Strader, J., & Arnold, J. A. 2014, MNRAS, 442, 1003CrossRefGoogle Scholar
Peacock, M. B., Strader, J., Romanowsky, A. J., & Brodie, J. P. 2015, ApJ, 800, 13CrossRefGoogle Scholar
Pu, S.-B., & Han, Z.-W. 2011, Research in Astronomy and Astrophysics, 11, 909CrossRefGoogle Scholar
Pu, S. B., Saglia, R. P., Fabricius, M. H., Thomas, J., Bender, R., & Han, Z. 2010, A&A, 516, A4Google Scholar
Raskutti, S., Greene, J. E., & Murphy, J. D. 2014, ApJ, 786, 23CrossRefGoogle Scholar
Rejkuba, M., Greggio, L., Harris, W. E., Harris, G. L. H., & Peng, E. W. 2005, ApJ, 631, 262CrossRefGoogle Scholar
Röttgers, B., Naab, T., & Oser, L. 2014, MNRAS, 445, 1065CrossRefGoogle Scholar
Sarzi, M., Alatalo, K., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Cappellari, M., Crocker, A., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Emsellem, E., Khochfar, S., Krajnović, D., Kuntschner, H., Lablanche, P.-Y., McDermid, R. M., Morganti, R., Naab, T., Oosterloo, T., Scott, N., Serra, P., Young, L. M., & Weijmans, A.-M. 2013, MNRAS, 432, 1845CrossRefGoogle Scholar
Sarzi, M., et al. 2010, MNRAS, 402, 2187CrossRefGoogle Scholar
Spolaor, M., Kobayashi, C., Forbes, D. A., Couch, W. J., & Hau, G. K. T. 2010, MNRAS, 408, 272CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., Tout, C. A., Hill, V., & Tolstoy, E. 2004, AJ, 128, 1177CrossRefGoogle Scholar
Weijmans, A.-M., et al. 2009, MNRAS, 398, 561CrossRefGoogle Scholar
White, S. D. M. 1980, MNRAS, 191, 1PGoogle Scholar
Williams, B. F., Dalcanton, J. J., Gilbert, E. F. B. M., Guhathakurta, P., Dorman, C., Lauer, T. R., Seth, A. C., Kalirai, J. S., Rosenfield, P., & Girardi, L. 2015, ApJ, accepted (arXiv:1501.06631)Google Scholar
Wu, X., Gerhard, O., Naab, T., Oser, L., Martinez-Valpuesta, I., Hilz, M., Churazov, E., & Lyskova, N. 2014, MNRAS, 438, 2701CrossRefGoogle Scholar