Skip to main content Accessibility help
×
Home

Measuring the dust content and formation in SN 1987A using detailed radiative transfer modelling

  • Maarten Baes (a1), Peter Camps (a1), Phil J. Cigan (a2), Christopher L. Fryer (a3), Mikako Matsuura (a2) and Sam Verstocken (a1)...

Abstract

Core-collapse supernovae are expected to be efficient producers of dust, and recent Herschel and ALMA observations have revealed up to 1 M of cold dust in the inner ejecta of SN 1987A. The formation time scale, spatial distribution and clumpiness, and the importance of the different heating sources of the dust remain poorly understood. We have started a project to make detailed 3D dust radiative transfer models for SN 1987A, based on a combination of the latest observational constraints and input from 3D hydrodynamical models and dust formation models. Preliminary results seem to indicate the need for large, micron-sized dust grains, and a relatively large dust mass.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measuring the dust content and formation in SN 1987A using detailed radiative transfer modelling
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measuring the dust content and formation in SN 1987A using detailed radiative transfer modelling
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measuring the dust content and formation in SN 1987A using detailed radiative transfer modelling
      Available formats
      ×

Copyright

References

Hide All
Abellan, F., Indebetouw, R., Matsuura, M., et al. 2017, in prep.
Baes, M., Fritz, J., Gadotti, D. A., et al. 2010, A&A, 518, L39
Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 22
Bevan, A. & Barlow, M. J. 2016, MNRAS, 456, 1269
Bouchet, P., Phillips, M. M., Suntzeff, N. B., et al. 1991, A&A, 245, 490
Camps, P. & Baes, M. 2015, Astronomy and Computing, 9, 20
Cigan, P., Matsuura, M., Gomez, H. L., et al. 2017, in prep.
De Geyter, G., Baes, M., Fritz, J., & Camps, P. 2013, A&A, 550, A74
De Geyter, G., Baes, M., Camps, P., et al. 2014, MNRAS, 441, 869
De Looze, I., Fritz, J., Baes, M., et al. 2014, A&A, 571, A69
Dwek, E. & Arendt, R. G. 2015, ApJ, 810, 75
Ellinger, C. I., Young, P. A., Fryer, C. L., & Rockefeller, G. 2012, ApJ, 755, 160
Fryer, C. L. & Warren, M. S. 2002, ApJL, 574, L65
Fryer, C. L., Rockefeller, G., & Warren, M. S. 2006, ApJ, 643, 292
Gall, C., Hjorth, J., & Andersen, A. C. 2011, A&AR, 19, 43
Hendrix, T., Keppens, R., van Marle, A. J., et al. 2016, MNRAS, 460, 3975
Hungerford, A. L., Fryer, C. L., & Rockefeller, G. 2005, ApJ, 635, 487
Indebetouw, R., Matsuura, M., Dwek, E., et al. 2014, ApJL, 782, L2
Matsuura, M., Dwek, E., Meixner, M., et al. 2011, Science, 333, 1258
Matsuura, M., Dwek, E., Barlow, M. J., et al. 2015, ApJ, 800, 50
Mosenkov, A. V., Allaert, F., Baes, M., et al. 2016, A&A, 592, A71
Saftly, W., Baes, M., De Geyter, G., et al. 2015, A&A, 576, A31
Sarangi, A. & Cherchneff, I. 2015, A&A, 575, A95
Sluder, A., Milosavljevic, M., & Montgomery, M. H. 2016, arXiv:1612.09013
Stalevski, M., Fritz, J., Baes, M., Nakos, T., & Popović, L. Č. 2012, MNRAS, 420, 2756
Steinacker, J., Baes, M., & Gordon, K. D. 2013, ARA&A, 51, 63
Wesson, R., Barlow, M. J., Matsuura, M., & Ercolano, B. 2015, MNRAS, 446, 2089
Wooden, D. H., Rank, D. M., Bregman, J. D., et al. 1993, ApJS, 88, 477
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed