Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-28T12:33:38.275Z Has data issue: false hasContentIssue false

Life Beyond PTF

Invited talk

Published online by Cambridge University Press:  29 August 2019

E. C. Bellm*
Affiliation:
Department of Astronomy, University of Washington, Seattle, WA, USA email: ecbellm@uw.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In March 2017, the Intermediate Palomar Transient Factory (iPTF) ceased operations. This Symposium was an appropriate opportunity to review the scientific returns from iPTF and its predecessor survey, the Palomar Transient Factory (PTF), and to summarise the lessons learned. Succeeding iPTF on the Palomar Observatory 48-inch Schmidt telescope is the Zwicky Transient Facility (ZTF), a new survey with an order of magnitude faster survey speed that is now being commissioned. I described the design and scientific rationale for ZTF. ZTF is prototyping new alert stream technologies being explored by the Large Synoptic Survey Telescope (LSST) to distribute millions of transient alerts per night to downstream science users. I described the design of the alert system and discussed it in the context of the wider LSST and community broker ecosystem.

Keywords

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bellm, E., & Kulkarni, S. 2017, Nature Astronomy, 1, 71CrossRefGoogle Scholar
Bellm, E. C. 2016, PASP, 128, 4501CrossRefGoogle Scholar
Bellm, E. C., Kaplan, D. L., Breton, R. P., et al. 2016, ApJ, 816, 74CrossRefGoogle Scholar
Bloom, J. S., Richards, J. W., Nugent, P. E., et al. 2012, PASP, 124, 1175CrossRefGoogle Scholar
Brink, H., Richards, J. W., Poznanski, D., et al. 2013, MNRAS, 435, 1047CrossRefGoogle Scholar
Cao, Y., Kulkarni, S. R., Howell, D.A., et al. 2015, Nature, 521, 328CrossRefGoogle Scholar
Cao, Y., Nugent, P. E., & Kasliwal, M. M. 2016, PASP, 128, 114502CrossRefGoogle Scholar
Cenko, S. B., Kulkarni, S. R., Horesh, A., et al. 2013, ApJ, 769, 130CrossRefGoogle Scholar
Cenko, S. B., Urban, A. L., Perley, D. A., et al. 2015, ApJ, 803, L24CrossRefGoogle Scholar
Chang, C. K., Lin, H. W., Ip, W. H., et al. 2017, ApJ, 840, L22CrossRefGoogle Scholar
Cook, D. O., Kasliwal, M. M., Van Sistine, A., et al. 2017, arXiv:1710.05016Google Scholar
Cuillandre, J. C., Luppino, G. A., Starr, B. M., & Isani, S. 2000, in: Iye, M., Moorwood, A. F. (eds.), Optical and IR Telescope Instrumentation and Detectors, Proc. SPIE, 4008, 1010CrossRefGoogle Scholar
Dekany, R., Smith, R. M., Belicki, J., et al. 2016, in: Evans, C. J., Simard, L., Takami, H. (eds.), Ground-based and Airborne Instrumentation for Astronomy, VI, Proc. SPIE, 9908, 5Google Scholar
Gal-Yam, A., Arcavi, I., Ofek, E. O., et al. 2014, Nature, 509, 471CrossRefGoogle Scholar
Goobar, A., Amanullah, R., Kulkarni, S. R., et al. 2017, Science, 356, 291CrossRefGoogle Scholar
Ivezic, Z., et al. 2008, arXiv:0805.2366Google Scholar
[LSE-163], Jurić, M., et al. 2017, LSST Data Products Definition Document, LSE-163Google Scholar
Kasliwal, M. M., Kulkarni, S. R., Gal-Yam, A., et al. 2012, ApJ, 755, 161CrossRefGoogle Scholar
Kupfer, T., van Roestel, J., Brooks, J., et al. 2017, ApJ, 835, 131CrossRefGoogle Scholar
Laher, R. R., Surace, J., Grillmair, C. J., et al. 2014, PASP, 126, 674Google Scholar
Laher, R. R., Masci, F. J., Groom, S., et al. 2017, arXiv:1708.01584Google Scholar
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395CrossRefGoogle Scholar
Li, W., Bloom, J. S., Podsiadlowski, P., et al. 2011, Nature, 480, 348CrossRefGoogle Scholar
Masci, F. J., Laher, R. R., Rebbapragada, U. D., et al. 2017, PASP, 129, 014002CrossRefGoogle Scholar
Nugent, P. E., Sullivan, M., Cenko, S.B., et al. 2011, Nature, 480, 344CrossRefGoogle Scholar
Quimby, R. M., Kulkarni, S. R., Kasliwal, M. M., et al. 2011, Nature, 474, 487CrossRefGoogle Scholar
Rahmer, G., Smith, R., Velur, V., et al. 2008, in: McLean, I. S. & Casali, M. M. (eds.), Ground-based and Airborne Instrumentation for Astronomy, II, Proc. SPIE, 7014, 4Google Scholar
Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334CrossRefGoogle Scholar
Smith, R. M., et al. 2014, in: Ramsay, S. K., McLean, I. S, & Takami, H. (eds.), Ground-based and Airborne Instrumentation for Astronomy, V, Proc. SPIE, 9147, 79Google Scholar
Waszczak, A., Chang, C. K., Ofek, E.O., et al. 2015, AJ, 150, 75CrossRefGoogle Scholar
Waszczak, A., Prince, T. A., Laher, R., et al. 2017, PASP, 129, 034402CrossRefGoogle Scholar
Zackay, B., Ofek, E. O., & Gal-Yam, A. 2016, ApJ, 830, 27CrossRefGoogle Scholar