Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T23:07:27.974Z Has data issue: false hasContentIssue false

The Kinematic Morphology-Density Relation from the SAMI Pilot Survey

Published online by Cambridge University Press:  09 February 2015

L. M. R. Fogarty
Affiliation:
Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) email: l.fogarty@physics.usyd.edu.au
the SAMI Galaxy Survey Team
Affiliation:
Full list of team members is available at http://sami-survey.org/members
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the kinematic morphology-density relation in three galaxy clusters, Abell 85, 168 and 2399, using data from the SAMI Pilot Survey. We classify the early-type galaxies in our sample as fast or slow rotators (FRs/SRs) according to a measured proxy for their projected specific stellar angular momentum. We find each cluster contains both fast and slow rotators with and average fraction of SRs in the sample of fSR=0.15 ± 0.04. We investigate this fraction within each cluster as a function of local projected galaxy density. For Abell 85 we find that fSR increases at high local density but for Abell 168 and 2399 this trend is not seen. We find SRs not just at the centres of our clusters but also on the outskirts and hypothesise that these SRs may have formed in group environments eventually accreted to the larger cluster.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Allen, J. T., Croom, S. M., Konstantopoulos, I. S., et al. 2014, MNRAS, submittedGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, MNRAS, 116, 138Google Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 413, 813CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 416, 1680Google Scholar
Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, MNRAS, 421, 872Google Scholar
D'Eugenio, F., Houghton, R. C. W., Davies, R. L., et al. 2013, MNRAS, 429, 1258CrossRefGoogle Scholar
de Zeeuw, P. T., Bureau, M., Emsellem, E., et al. 2002, MNRAS, 329, 513Google Scholar
Dressler, A. 1980, ApJ, 236, 351Google Scholar
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2007, MNRAS, 379, 401Google Scholar
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2011, MNRAS, 414, 888Google Scholar
Fogarty, L. M. R., Scott, N., Owers, M. S., et al. 2014, MNRAS, 443 485CrossRefGoogle Scholar
Houghton, R. C. W., Davies, R. L., D'Eugenio, F., et al. 2013, MNRAS, 436, 19CrossRefGoogle Scholar
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006, MNRAS, 371, 703Google Scholar
Sharp, R., Allen, J. T., Fogarty, L. M. R., et al. 2014, MNRAS, submittedGoogle Scholar
Smith, G. A., Saunders, W., Bridges, T., et al. 2004, SPIE, 5492, 410Google Scholar