Skip to main content Accessibility help
×
Home

The infancy of supernova remnants: evolving a supernova into its remnant in 3D

  • Michael Gabler (a1), Hans-Thomas Janka (a1) and Annop Wongwathanarat (a2)

Abstract

Recently, first neutrino-driven supernova explosions have been obtained in 3D, self-consistent, first-principle simulations, these models are still not always exploding robustly and, in general, the explosions are not sufficiently energetic. To constrain the explosion mechanism, and the related uncertainties, it is thus very helpful to consider observational constraints: pulsar kicks, progenitor association and supernova remnants (SNR). Recent observations of asymmetries in the supernova ejecta of Cas A are very promising, to compare to long-term simulations of the explosion. In addition 3D observations of SN87A are becoming more constraining on the geometry of the ejected material during the explosion. In this talk I will discuss our efforts to model the late time evolution of a 3D supernova explosion, where we include the effects of beta decay, which inflates the structures rich in 56Ni. The structures we find in the simulations depend on the quantities plotted.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The infancy of supernova remnants: evolving a supernova into its remnant in 3D
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The infancy of supernova remnants: evolving a supernova into its remnant in 3D
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The infancy of supernova remnants: evolving a supernova into its remnant in 3D
      Available formats
      ×

Copyright

References

Hide All
Arnett, D., Fryxell, B., & Mueller, E. 1989, ApJ, 341, L63
Blondin, J. M. & Lundqvist, P. 1993, ApJ, 405, 337
Blondin, J. M., Borkowski, K. J., & Reynolds, S. P. 2001, ApJ, 557, 782
Boggs, S. E., Harrison, F. A., Miyasaka, H., et al. 2015, Science, 348, 670
Colella, P. & Glaz, H. M. 1985, Journal of Computational Physics, 59, 264
Colella, P. & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174
Couch, S. M., Wheeler, J. C., & Milosavljević, M. 2009, ApJ, 696, 953
Couch, S. M., Pooley, D., Wheeler, J. C., & Milosavljević, M. 2011, ApJ, 727, 104
DeLaney, T., Rudnick, L., Stage, M. D., et al. 2010, ApJ, 725, 2038
Dewey, D., Dwarkadas, V. V., Haberl, F., Sturm, R., & Canizares, C. R. 2012, ApJ, 752, 103
Ellinger, C. I., Young, P. A., Fryer, C. L., & Rockefeller, G. 2012, ApJ, 755, 160
Ellinger, C. I., Rockefeller, G., Fryer, C. L., Young, P. A., & Park, S. 2013, arXiv:1305.4137
Fesen, R. A. 2001, ApJS, 133, 161
Fesen, R. A., Hammell, M. C., Morse, J., et al. 2006, ApJ, 645, 283
Fryxell, B., Arnett, D., & Mueller, E. 1991, ApJ, 367, 619
Gawryszczak, A., Guzman, J., Plewa, T., & Kifonidis, K. 2010, A&A, 521, A38
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339
Grefenstette, B. W., Fryer, C. L., Harrison, F. A., et al. 2017, ApJ, 834, 19
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1990, ApJ, 358, L57
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1992, ApJ, 390, 230
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1994, A&AS, 104
Hammer, N. J., Janka, H.-T., & Müller, E. 2010, ApJ, 714, 1371
Herant, M. & Benz, W. 1991, ApJ, 370, L81
Herant, M. & Woosley, S. E. 1994, ApJ, 425, 814
Herant, M. & Benz, W. 1992, ApJ, 387, 294
Hungerford, A. L., Fryer, C. L., & Warren, M. S. 2003, ApJ, 594, 390
Hwang, U., Laming, J. M., Badenes, C., et al. 2004, ApJ, 615, L117
Hungerford, A. L., Fryer, C. L., & Rockefeller, G. 2005, ApJ, 635, 487
Iwamoto, K., Young, T. R., Nakasato, N., et al. 1997, ApJ, 477, 865
Joggerst, C. C., Woosley, S. E., & Heger, A. 2009, ApJ, 693, 1780
Joggerst, C. C., Almgren, A., Bell, J., et al. 2010, ApJ, 709, 11
Joggerst, C. C., Almgren, A., & Woosley, S. E. 2010, ApJ, 723, 353
Junde, H., Su, H., & Dong, Y. 2011, Nuclear Data Sheets, 112, 1513
Kageyama, A. & Sato, T. 2004, Geochemistry, Geophysics, Geosystems, 5, Q09005
Kifonidis, K., Plewa, T., Janka, H.-T., & Müller, E. 2000, ApJ, 531, L123
Kifonidis, K., Plewa, T., Janka, H.-T., & Müller, E. 2003, A&A, 408, 621
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T., & Müller, E. 2006, A&A, 453, 661
Li, H., McCray, R., & Sunyaev, R. A. 1993, ApJ, 419, 824
Milisavljevic, D., & Fesen, R. A. 2013, ApJ, 772, 134
Milisavljevic, D., & Fesen, R. A. 2015, Science, 347, 526
Mueller, E., Fryxell, B., & Arnett, D. 1991, A&A, 251, 505
Nagataki, S., Hashimoto, M.-a., Sato, K., Yamada, S., & Mochizuki, Y. S. 1998, ApJ, 492, L45
Ono, M., Nagataki, S., Ito, H., et al. 2013, ApJ, 773, 161
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2015, ApJ, 810, 168
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2016, ApJ, 822, 22
Plewa, T. & Müller, E. 1999, A&A, 342, 179
Podsiadlowski, P., Morris, T. S., & Ivanova, N. 2007, Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters, 937, 125
Potter, T. M., Staveley-Smith, L., Reville, B., et al. 2014, ApJ, 794, 174
Tanaka, T. & Washimi, H. 2002, Science, 296, 321
Utrobin, V. P., Wongwathanarat, A., Janka, H.-T., & Müller, E. 2015, A&A, 581, A40
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2010, ApJ, 725, L106
Wongwathanarat, A., Hammer, N. J., & Müller, E. 2010, A&A, 514, A48
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2013, A&A, 552, A126
Wongwathanarat, A., Müller, E., & Janka, H.-T. 2015, A&A, 577, A48
Wongwathanarat, A., Janka, H.-T., Mueller, E., Pllumbi, E., & Wanajo, S. 2016, arXiv:1610.05643
Woosley, S. E. 1988, ApJ, 330, 218
Yamada, S. & Sato, K. 1990, ApJ, 358, L9
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

The infancy of supernova remnants: evolving a supernova into its remnant in 3D

  • Michael Gabler (a1), Hans-Thomas Janka (a1) and Annop Wongwathanarat (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed