Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:15:10.398Z Has data issue: false hasContentIssue false

Implementing and comparing sink particles in AMR and SPH

Published online by Cambridge University Press:  27 April 2011

Christoph Federrath
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: chfeder@ita.uni-heidelberg.de
Robi Banerjee
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: chfeder@ita.uni-heidelberg.de
Daniel Seifried
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: chfeder@ita.uni-heidelberg.de
Paul C. Clark
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: chfeder@ita.uni-heidelberg.de
Ralf S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: chfeder@ita.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We implemented sink particles in the Adaptive Mesh Refinement (AMR) code FLASH to model the gravitational collapse and accretion in turbulent molecular clouds and cores. Sink particles are frequently used to measure properties of star formation in numerical simulations, such as the star formation rate and efficiency, and the mass distribution of stars. We show that only using a density threshold for sink particle creation is insufficient in case of supersonic flows, because the density can exceed the threshold in strong shocks that do not necessarily lead to local collapse. Additional physical collapse indicators have to be considered. We apply our AMR sink particle module to the formation of a star cluster, and compare it to a Smoothed Particle Hydrodynamics (SPH) code with sink particles. Our comparison shows encouraging agreement of gas and sink particle properties between the AMR and SPH code.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362CrossRefGoogle Scholar
Boss, A. P. & Bodenheimer, P. 1979, ApJ, 234, 289CrossRefGoogle Scholar
Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G., & Teyssier, R. 2008, A&A, 482, 371Google Scholar
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, ApJ, 713, 269CrossRefGoogle Scholar
Fryxell, et al. 2000, ApJS, 131, 273CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Klein, R. I. 2004, ApJ, 611, 399CrossRefGoogle Scholar
Larson, R. B. 1969, MNRAS, 145, 271CrossRefGoogle Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125CrossRefGoogle Scholar
Penston, M. V. 1969, MNRAS, 144, 425CrossRefGoogle Scholar
Price, D. J. 2010, MNRAS, 401, 1475Google Scholar
Price, D. J. & Bate, M. R. 2008, MNRAS, 385, 1820CrossRefGoogle Scholar
Price, D. J. & Federrath, C. 2010, MNRAS, 406, 1659Google Scholar
Truelove, et al. 1997, ApJ, 489, L179CrossRefGoogle Scholar
Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New Astron., 9, 137CrossRefGoogle Scholar