Skip to main content Accessibility help
×
Home

High Speed Solar Wind Forecast Model from the Solar Surface to 1AU Using Global 3D MHD Simulation

Published online by Cambridge University Press:  24 July 2018

Mitsue Den
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan email: den@nict.go.jp
Takashi Tanaka
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan email: den@nict.go.jp Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Yuki Kubo
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan email: den@nict.go.jp
Shinichi Watari
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan email: den@nict.go.jp
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Emanating from coronals holes (CHs), high speed streams (HSSs) cause recurrent geomagnetic disturbances in the Earth’s magnetosphere. For this reason being able to predict the occurrence and timing of the high speed solar wind is one of the more important issues in space weather forecasting. Currently, it is still difficult to estimate the effect of a CH in case that it extends from high latitudes to lower ones. To monitor the global solar wind condition we have therefore developed a three-dimensional MHD simulation code, the REProduce Plasma Universe (REPPU) code, that is driven by the solar magnetic field from the solar surface to 1AU. The connectivity of magnetic field lines from CHs to Earth’s orbit via HSSs has been investigated. Simulation results are presented and the usefulness of our model is discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Den, M., Tanaka, T., Kubo, Y. & Watari, S. 2015, Proceedings of Science, ICRC2015, 184Google Scholar
Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H. & Shinagawa, H. 2009, J. Geophys. Res., 114, A07109CrossRefGoogle Scholar
Shiota, D. & Kataoka, R. 2016, Space Weather, 14, 56CrossRefGoogle Scholar
Odstrcil, D., Pizzo, V. J. & Arge, C. N. 2005, J. Geophys. Res., 110, A02106CrossRefGoogle Scholar
Toth, G., Sokolov, I. V., Gombosi, T. I., et al. 2005, J. Geophys. Res., 110, A12226CrossRefGoogle Scholar
Riley, P., Linker, J. A. & Mikic, Z. 2001, J. Geophys. Res., 106, 15889CrossRefGoogle Scholar
Tanaka, T. 1994, J. Comp. Phys., 111, 381CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 38 *
View data table for this chart

* Views captured on Cambridge Core between 24th July 2018 - 18th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-77fc7d77f9-wd6lz Total loading time: 0.228 Render date: 2021-01-18T20:58:10.915Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 20:54:44 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Speed Solar Wind Forecast Model from the Solar Surface to 1AU Using Global 3D MHD Simulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Speed Solar Wind Forecast Model from the Solar Surface to 1AU Using Global 3D MHD Simulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Speed Solar Wind Forecast Model from the Solar Surface to 1AU Using Global 3D MHD Simulation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *