Skip to main content Accessibility help
×
Home

High Energy Exoplanet Transits

  • Joe Llama (a1) and Evgenya L. Shkolnik (a2)

Abstract

X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High Energy Exoplanet Transits
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High Energy Exoplanet Transits
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High Energy Exoplanet Transits
      Available formats
      ×

Copyright

References

Hide All
Ben-Jaffel, L. & Sona Hosseini, S., 2010, ApJ, 709, 1284
Berdyugina, S. V., 2005, Living Reviews in Solar Physics, 2, 8
Bourrier, V., Lecavelier des Etangs, A., Dupuy, H., et al., 2013, A&A, 551, A63
Davenport, J. R. A., Hebb, L., & Hawley, S. L., 2015, ApJ, 806, 212
Ehrenreich, D., Bourrier, V., Bonfils, X., et al., 2012, A&A, 547, A18
Ehrenreich, D., Bourrier, V., Wheatley, P. J., et al., 2015, Nature, 522, 459
Fossati, L., Haswell, C. A., Froning, C. S., et al., 2010, ApJL, 714, L222
Haswell, C. A., Fossati, L., Ayres, T., et al., 2012, ApJ, 760, 79
Gibson, N. P., Aigrain, S., Pont, F., et al., 2012, MNRAS, 422, 753
Gu, P.-G., Lin, D. N. C., & Bodenheimer, P. H., 2003, ApJ, 588, 509
Ibgui, L., Burrows, A., & Spiegel, D. S., 2010, ApJ, 713, 751
Kulow, J. R., France, K., Linsky, J., & Loyd, R. O. P., 2014, ApJ, 786, 132
Lai, D., Helling, C., & van den Heuvel, E. P. J., 2010, ApJ, 721, 923
Lammer, H., Selsis, F., Ribas, I., et al., 2003, ApJL, 598, L121
Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C., & Hébrard, G., 2004, A&A, 418, L1
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., et al., 2010, A&A, 514, A72
Lecavelier des Etangs, A., Bourrier, V., Wheatley, P. J., et al. 2012, A&A, 543, L4
Llama, J., Wood, K., Jardine, M., et al., 2011, MNRAS, 416, L41
Llama, J., Jardine, M., Mackay, D. H., & Fares, R., 2012, MNRAS, 422, 72
Llama, J., Vidotto, A. A., Jardine, M., et al., 2013, MNRAS, 436, 2179
Llama, J. & Shkolnik, E. L., 2015, ApJ, 802, 41
Llama, J. & Shkolnik, E. L., 2016, ApJ, 817, 81
Mandel, K. & Agol, E., 2002, ApJL, 580, L171
Nikolov, N., Sing, D. K., Pont, F., et al., 2014, MNRAS, 437, 46
Pont, F., Sing, D. K., Gibson, N. P., et al., 2013, MNRAS, 432, 2917
Poppenhaeger, K., Schmitt, J. H. M. M., & Wolk, S. J., 2013, ApJ, 773, 62
Sanchis-Ojeda, R. & Winn, J. N., 2011, ApJ, 743, 61
Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., et al., 2013, ApJ, 775, 54
Sing, D. K., Pont, F., Aigrain, S., et al., 2011, MNRAS, 416, 1443
Stevenson, K. B., Bean, J. L., Seifahrt, A., et al., 2014, AJ, 147, 161
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., et al., 2003, Nature, 422, 143
Vidal-Madjar, A., Désert, J.-M., Lecavelier des Etangs, A., et al., 2004, ApJL, 604, L69
Vidotto, A. A., Jardine, M., & Helling, C., 2010, ApJL, 722, L168
Winn, J. N., Johnson, J. A., Howard, A. W., et al., 2010, ApJL, 723, L223
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

High Energy Exoplanet Transits

  • Joe Llama (a1) and Evgenya L. Shkolnik (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.