Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:08:15.931Z Has data issue: false hasContentIssue false

Gravitational wave optical counterpart searching based on GRAWITA and DLT40 project during LIGO O2 run

Published online by Cambridge University Press:  29 January 2019

Sheng Yang*
Affiliation:
Department of Physics, University of California, Davis, CA 95616-5270, USA email: sheng.yang@oapd.inaf.it, sngyang@ucdavis.edu Osservatorio Astronomico di Padova, INAF, I-35122 Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The identification of the electromagnetic(EM) counterpart of gravitational wave(GW) trigger in the sky localization is a very difficult task because of the large uncertainty. Two complementary approaches are used in order to search for EM counterpart of GW signal with a typical large sky localization uncertainty: wide-field tilling search on high probability GW region, e.g. Gravitational Wave Inaf Team(GRAWITA) project or pointed search of selected galaxies in high probability GW region, e.g. Distance Less Than 40 Mpc survey(DLT40) project.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

References

Abadie, J., et al. 2012a, Astronomy & Astrophysics, 541, A155Google Scholar
Abadie, J., et al. 2012b, Astronomy & Astrophysics, 539, A124Google Scholar
Aasi, J., et al. 2013, Nature Photonics 7, 613Google Scholar
Aasi, J., et al., 2015, Classical and Quantum Gravity, 32, 115012Google Scholar
Acernese, F., et al. 2015, Classical and Quantum Gravity, 32, 024001Google Scholar
Abbott, , et al. 2016a, PRL, 116, 061102Google Scholar
Abbott, , et al. 2016b, PRL, 116, 241103Google Scholar
Abbott, , et al. 2017a, PRL, 119, 161101Google Scholar
Abbott, , et al. 2017b, ApjL, 848, L12Google Scholar
Brocato, E., Branchesi, M., & Cappellaro, E. et al. 2017, MNRAS, arXiv:1710.05915Google Scholar
Coulter, D. A., Kilpatrick, C. D., & Siebert, M. R. et al. 2017, Sci, https://doi.org/10.1126/science.aap9811Google Scholar
Fermi-GBM 2017, GRB Coordinates Network, 524666471Google Scholar
Gehrels, N., Cannizzo, J. K., & Kanner, J., 2016, Apj, 820, 136Google Scholar
Hanna, C., Mandel, I., & Vousden, W., 1993, Apj, 784, 8Google Scholar
Meegan, C., Lichti, G., & Bhat, P. N., 2009, ApJ, 702, 791Google Scholar
Pian, E., D’Avanzo, P., Benetti, S., et al. 2017, Nature, 551, 67Google Scholar
Tartaglia, L., Sand, D. J., Valenti, S., et al. 2017, arXiv:1711.03940Google Scholar
Valenti, S., David, J., Soung, S. et al. 2017, apjl, 848, 2Google Scholar
White, D. J., Daw, E. J., & Dhillon, V. S., 2011, Classical and Quantum Gravity, 28, 085016Google Scholar
Yang, S., Valenti, S., & David, S. et al. 2017a, apjl, arXiv:1710.05864Google Scholar
Yang, S., Valenti, S., Sand, D., et al. 2017b, GRB Coordinates Network, 21531Google Scholar