Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T21:55:06.117Z Has data issue: false hasContentIssue false

From supergiant stars to galaxies: The path to extragalactic distances

Published online by Cambridge University Press:  26 February 2013

Fabio Bresolin
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, 96822 Honolulu, HI, USA email: bresolin@ifa.hawaii.edu, kud@ifa.hawaii.edu
Rolf-Peter Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, 96822 Honolulu, HI, USA email: bresolin@ifa.hawaii.edu, kud@ifa.hawaii.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The spectroscopic study of blue supergiants in nearby galaxies can yield crucial information about the spatial distribution of extinction by dust, and can be successfully used to measure the metal content, abundance patterns, and distances of galaxies out to ~8 Mpc with current telescopes and instrumentation. We briefly review the results of an ongoing project in which the quantitative analysis of B- and A-type supergiants is used to independently test widely used metallicity diagnostics for star-forming galaxies and derive reddening-free extragalactic distances.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bono, G., Caputo, F., Fiorentino, G., et al. 2008, ApJ, 684, 102Google Scholar
Bresolin, F. 2011, ApJ, 729, 56Google Scholar
Bresolin, F., Gieren, W., Kudritzki, R.-P., et al. 2009, ApJ, 700, 309Google Scholar
Bresolin, F., Pietrzyński, G., Urbaneja, M. A., et al. 2006, ApJ, 648, 1007Google Scholar
Bresolin, F., Garnett, D. R., & Kennicutt, R. C. 2004, ApJ, 615, 228CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47Google Scholar
Gerke, J. R., Kochanek, C. S., Prieto, J. L., et al. 2011, ApJ, 743, 176Google Scholar
Kennicutt, R. C., Stetson, P. B., Saha, A., et al. 1998, ApJ, 498, 181Google Scholar
Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183Google Scholar
Kudritzki, R.-P. & Urbaneja, M. A. 2012, ApSS, 341, 131Google Scholar
Kudritzki, R.-P., Urbaneja, M. A., Gazak, Z., et al. 2012, ApJ, 747, 15CrossRefGoogle Scholar
Kudritzki, R.-P., Urbaneja, M. A., Bresolin, F., et al. 2008, ApJ, 681, 269Google Scholar
Kudritzki, R. P., Bresolin, F., & Przybilla, N. 2003, ApJ, 582, L83Google Scholar
Macri, L. M., Stanek, K. Z., Bersier, D., et al. 2006, ApJ, 652, 1133Google Scholar
Majaess, D., Turner, D., & Gieren, W. 2011, ApJ, 741 L36Google Scholar
Nicholls, D. C., Dopita, M. A., & Sutherland, R. S. 2012, ApJ, 752, 148Google Scholar
Rizzi, L., Tully, R. B., Makarov, D., et al. 2007, ApJ, 661, 815CrossRefGoogle Scholar
U, V., Urbaneja, M. A., Kudritzki, R.-P., et al. 2009, ApJ, 704, 1120CrossRefGoogle Scholar
Urbaneja, M. A., Kudritzki, R.-P., Bresolin, F., et al. 2008, ApJ, 684, 118Google Scholar
Stasińska, G., Prantzos, N., Meynet, G., et al. 2012, Oxygen in the Universe, (EDP Sciences)Google Scholar
Suyu, S. H., et al. 2012, in: KIPAC workshop on the Hubble constant (arXiv:1202.4449)Google Scholar
Zurita, A. & Bresolin, F. 2012, MNRAS, in press (arXiv:1209.1505)Google Scholar