Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T04:47:09.740Z Has data issue: false hasContentIssue false

Four- and five-body periodic Caledonian orbits

Published online by Cambridge University Press:  30 May 2022

Valerie Chopovda
Affiliation:
School of Mathematical and Computational Sciences, Massey University, Auckland, New Zealand. emails: valerie.chopovda@gmail.com, w.sweatman@massey.ac.nz
Winston L. Sweatman
Affiliation:
School of Mathematical and Computational Sciences, Massey University, Auckland, New Zealand. emails: valerie.chopovda@gmail.com, w.sweatman@massey.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider four- and five-body problems with symmetrical masses (Caledonian problems). Families of periodic orbits originate from the collinear Schubart orbits. We present and discuss some of these periodic orbits.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

Present address: Department of Engineering Science, University of Auckland, New Zealand.

References

Chen, K. 2001, Arch. Ration. Mech. Anal. 158(4), 293 CrossRefGoogle Scholar
Chopovda, V. 2019, Computational studies in the few-body problem, PhD thesis, Massey University, Auckland, New ZealandGoogle Scholar
Chopovda, V., & Sweatman, W.L. 2018, Cel. Mech. Dyn. Astron., 130, 39 CrossRefGoogle Scholar
Heggie, D.C. 1974, Cel. Mech., 10, 217 CrossRefGoogle Scholar
Hénon, M. 1976, Cel. Mech. Dyn. Astron., 13, 267 CrossRefGoogle Scholar
Roy, A.E., & Steves, B.A. 2000, Cel. Mech. Dyn. Astron., 78, 299 CrossRefGoogle Scholar
Schubart, J. 1956, AN, 283, 17 Google Scholar
Sekiguchi, M., & Tanikawa, K. 2004, PASJ, 56, 235 CrossRefGoogle Scholar
Sivasankaran, A., Steves, B.A., & Sweatman, W.L. 2010, Cel. Mech. Dyn. Astron., 107, 157 CrossRefGoogle Scholar
Steves, B.A., Shoaib, M., & Sweatman, W.L. 2020, Cel. Mech. Dyn. Astron., 132, 53 CrossRefGoogle Scholar
Sweatman, W.L. 2002, Cel. Mech. Dyn. Astron., 82, 179 CrossRefGoogle Scholar
Sweatman, W.L. 2006, Cel. Mech. Dyn. Astron., 94, 37 CrossRefGoogle Scholar
Sweatman, W.L. 2014, in: Knežević, Z. & Lematre, Anne (eds.), Complex Planetary Systems, Proc. IAU Symposium No. 314, p. 106 CrossRefGoogle Scholar
Sweatman, W.L. 2015, in: Cojocaru, M., Kotsireas, I.S., Makarov, R.N., Melnik, R. & Shodiev, H. (eds.), Interdisciplinary Topics in Applied Mathematics, Modeling, and Computational Science, Springer Proc. in Maths. and Stats., 117, p. 439 Google Scholar