Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T22:17:06.041Z Has data issue: false hasContentIssue false

Formation of globular clusters with multiple populations

Published online by Cambridge University Press:  31 March 2017

T. Decressin*
Affiliation:
INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (RM), Italy email: tdecressin@googlemail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectroscopic and photometric evidences have led to a complete revision of our understanding of globular clusters with the discovery of multiple stellar populations which differ chemically. Whereas some stars have a chemical composition similar to fields stars, others show large star-to-star variations in light elements (Li to Al) while their composition in iron and heavy elements stay constant. This peculiar chemical pattern can be explained by self-pollution of the intracluster gas occurring in the early evolution of clusters. Here the possible impact from a first generation of fast rotating stars to the early evolution of globular clusters is presented. The high rotation velocity will allow the stars to rotate at the break-up velocity and release matter enrich in H-burning which in turn will produce new stars with a chemical composition in agreement with observations. The massive stars have also an important role to clear the cluster from the remaining gas left after the star formation episodes. If the gas expulsion is fast enough, the strong change in the potential well will lead to the loss of stars occupying the outer part of the cluster. As second generation stars are preferentially born in the cluster centre, the ratio of second to first generation stars will increase over time to match the present ratio determined by observations. Considerations on the properties of low-mass stars still present in globular clusters will also be presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Anderson, J. & van der Marel, R. P. 2010, ApJ, 710, 1032 Google Scholar
Bastian, N. & de Mink, S. E. 2009, MNRAS, 398, L11 Google Scholar
Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., et al. 2013, MNRAS, 436, 2398 Google Scholar
Bedin, L. R., Piotto, G., Anderson, J., et al. 2004, ApJ, 605, L125 Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, A&A, 516, A55 Google Scholar
Chantereau, W., Charbonnel, C., & Decressin, T. 2015, A&A, 578, A117 Google Scholar
Charbonnel, C. & Lagarde, N. 2010, A&A, 522, A10 Google Scholar
D'Antona, F., Di Criscienzo, M., Decressin, T., et al. 2015, MNRAS, 453, 2637 CrossRefGoogle Scholar
D'Antona, F., Ventura, P., Decressin, T., Vesperini, E. & D'Ercole, A. 2014, MNRAS, 443, 3302 Google Scholar
de Mink, S. E., Pols, O. R., Langer, N., & Izzard, R. G. 2009, A&A, 507, L1 Google Scholar
Decressin, T., Baumgardt, H., Charbonnel, C., & Kroupa, P. 2010, A&A, 516, A73 Google Scholar
Decressin, T., Baumgardt, H., & Kroupa, P. 2008, A&A, 492, 101 Google Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859 Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007b, A&A, 464, 1029 Google Scholar
Denissenkov, P. A. & Hartwick, F. D. A. 2014, MNRAS, 437, L21 Google Scholar
D'Ercole, A., D'Antona, F., Carini, R., Vesperini, E., & Ventura, P. 2012, MNRAS, 423, 1521 Google Scholar
D'Ercole, A., D'Antona, F., Ventura, P., Vesperini, E., & McMillan, S. L. W. 2010, MNRAS, 407, 854 CrossRefGoogle Scholar
D'Ercole, A., D'Antona, F., & Vesperini, E. 2011, MNRAS, 415, 1304 Google Scholar
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825 CrossRefGoogle Scholar
Dobrovolskas, V., Kučinskas, A., Bonifacio, P., et al. 2014, A&A, 565, A121 Google Scholar
Georgy, C., Granada, A., Ekström, S., et al. 2014, A&A, 566, A21 Google Scholar
Girardi, L., Eggenberger, P., & Miglio, A. 2011, MNRAS, 412, L103 Google Scholar
Goudfrooij, P., Puzia, T. H., Chandar, R., & Kozhurina-Platais, V. 2011, ApJ, 737, 4 Google Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&Ar, 20, 50 Google Scholar
Krause, M., Charbonnel, C., Decressin, T., Meynet, G., & Prantzos, N. 2013, A&A, 552, A121 Google Scholar
Krause, M., Charbonnel, C., Decressin, T., et al. 2012, A&A, 546, L5 Google Scholar
Larsen, S. S., Strader, J., & Brodie, J. P. 2012, A&A, 544, L14 Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545 Google Scholar
Mackey, A. D., Broby Nielsen, P., Ferguson, A. M. N., & Richardson, J. C. 2008, ApJ, 681, L17 Google Scholar
Maeder, A. & Meynet, G. 2006, A&A, 448, L37 Google Scholar
Mengel, J. G. & Gross, P. G. 1976, Ap&SS, 41, 407 Google Scholar
Milone, A. P., Bedin, L. R., Piotto, G., & Anderson, J. 2009, A&A, 497, 755 Google Scholar
Milone, A. P., Bedin, L. R., Piotto, G., et al. 2015, MNRAS, 450, 3750 Google Scholar
Monaco, L., Villanova, S., Bonifacio, P., et al. 2012, A&A, 539, A157 Google Scholar
Niederhofer, F., Georgy, C., Bastian, N., & Ekström, S. 2015, MNRAS, 453, 2070 Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470, 179 Google Scholar
Rubele, S., Girardi, L., Kozhurina-Platais, V., et al. 2013, MNRAS, 430, 2774 CrossRefGoogle Scholar
Tailo, M., D'Antona, F., Vesperini, E., et al. 2015, Nature, 523, 318 Google Scholar
Ulrich, R. K. 1972, ApJ, 172, 165 Google Scholar
Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ, 550, L65 Google Scholar
Ventura, P., Di Criscienzo, M., Carini, R., & D'Antona, F. 2013, MNRAS, 431, 3642 CrossRefGoogle Scholar
Zahn, J.-P. 1977, A&A, 57, 383 Google Scholar