Hostname: page-component-797576ffbb-6mkhv Total loading time: 0 Render date: 2023-12-02T00:13:18.768Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Foreground mitigation strategy for measuring the 21 cm-LAE cross-correlation

Published online by Cambridge University Press:  08 May 2018

Shintaro Yoshiura
Department of Physics, Kumamoto University, Kumamoto, Japan email:
Jack L. B. Line
The University of Melbourne, Melbourne, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
Kenji Kubota
Department of Physics, Kumamoto University, Kumamoto, Japan email:
Kenji Hasegawa
Department of Physics, Nagoya University, Aichi, Japan
Keitaro Takahashi
Department of Physics, Kumamoto University, Kumamoto, Japan email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cross power spectrum of the 21 cm signal and Lyman-α emitters (LAEs) is a probe of the Epoch of Reionization. Astrophysical foregrounds do not correlate with the LAE distribution, though the foregrounds contribute to the error. To study the impact of foregrounds on the measurement, we assume realistic observation by the Murchison Widefield Array using a catalogue of radio galaxies, a LAE survey by the Subaru Hyper Supreme-Cam and the redshift of LAEs is determined by the Prime Focus Spectrograph. The HI distribution is estimated from a radiative transfer simulation with models based on results of radiation hydrodynamics simulation. Using these models, we found that the error of cross power spectrum is dominated by foreground terms. Furthermore, we estimate the effects of foreground removal, and find 99% of the foreground removal is required to detect the 21 cm-LAE signal at k ∼ 0.4 h Mpc−1.

Contributed Papers
Copyright © International Astronomical Union 2018 


Bowman, J. D., Cairns, I., Kaplan, D. L., et al. 2013, PASA, 30, e031Google Scholar
Furlanetto, S. R. & Lidz, A., 2007, ApJ, 660, 1030Google Scholar
Hurley-Walker, N., Callingham, J. R., Hancock, P. J., et al. 2017, MNRAS, 464, 1146Google Scholar
Ishiyama, T., Fukushige, T., & Makino, J., 2009, PASJ, 61, 1319Google Scholar
Jelić, V., Zaroubi, S., Labropoulos, P., et al. 2008, MNRAS, 389, 1319Google Scholar
Konno, A., Ouchi, M., Shibuya, T., et al. 2017, arXiv:1705.01222Google Scholar
Kubota, K., Yoshiura, S., Takahashi, K., et al. 2017, arXiv:1708.06291Google Scholar
Lidz, A., Zahn, O., Furlanetto, S. R., et al. 2009, APJ, 690, 252Google Scholar
Mellema, G., Koopmans, L. V. E., Abdalla, F. A., et al. 2013, Experimental Astronomy, 36, 235Google Scholar
Park, J., Kim, H.-S., Wyithe, J. S. B., & Lacey, C. G., 2014, MNRAS, 438, 2474Google Scholar
Thyagarajan, N., Udaya Shankar, N., Subrahmanyan, R., et al. 2013, APJ, 776, 6Google Scholar
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007Google Scholar
Yajima, H., Sugimura, K. & Hasegawa, K. 2017, arXiv:1701.05571Google Scholar
Yoshiura, S., Line, J. L. B., Kubota, K., Hasegawa, K. & Takahashi, K. 2018, accepted to MNRASGoogle Scholar