Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T08:10:53.333Z Has data issue: false hasContentIssue false

First empirical constraints on the low Hα mass-loss rates of magnetic O-stars

Published online by Cambridge University Press:  30 December 2019

Florian A. Driessen
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D box 2401, BE-3001, Leuven, Belgium email: florian.driessen@kuleuven.be
Jon O. Sundqvist
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D box 2401, BE-3001, Leuven, Belgium email: florian.driessen@kuleuven.be
Gregg A. Wade
Affiliation:
Dept. of Physics & Space Science, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A small subset of Galactic O-stars possess surface magnetic fields that alter the outflowing stellar wind by magnetically confining it. Key to the magnetic confinement is that it induces rotational modulation of spectral lines over the full EM domain; this allows us to infer basic quantities, e.g., mass-loss rate and magnetic geometry. Here, we present an empirical study of the Hα line in Galactic magnetic O-stars to constrain the mass fed from the stellar base into the magnetosphere, using realistic multi-dimensional magnetized wind models, and compare with theoretical predictions. Our results suggest that it may be reasonable to use mass-feeding rates from non-magnetic wind theory if the absolute mass-loss rate is scaled down according to the amount of wind material falling back upon the stellar surface. This provides then some empirical support to the proposal that such magnetic O-stars might evolve into heavy stellar-mass black holes (Petit et al.2017).

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Castor, J. I., Abbott, D. C. & Klein, R. I. 1975, ApJ, 195, 157 CrossRefGoogle Scholar
Owocki, S. P., ud-Doula, A., Sundqvist, J. O., et al. 2016, MNRAS, 462, 3830 Google Scholar
Petit, V., Owocki, S. P., Wade, G. A., et al. 2013, MNRAS, 429, 398 CrossRefGoogle Scholar
Petit, V., Keszthelyi, Z., MacInnis, R., et al. 2017, MNRAS, 466, 1052 CrossRefGoogle Scholar
Puls, J., Vink, J. S. & Najarro, F. 2008, A&AR, 16, 209 Google Scholar
Sundqvist, J. O., ud-Doula, A., Owocki, S. P., et al. 2012, MNRAS, 423, L21 CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ, 576, 413 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS, 385, 97 CrossRefGoogle Scholar
ud-Doula, A., Sundqvist, J. O., Owocki, S. P., et al. 2013, MNRAS, 428, 2723 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295 Google Scholar
Wade, G. A., Neiner, C., Alecian, E., et al. 2016, MNRAS, 456, 2 CrossRefGoogle Scholar