Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 1.711 Render date: 2021-03-01T01:27:32.065Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The extraordinary outburst in NGC6334I-MM1: dimming of the hypercompact HII region and destruction of water masers

Published online by Cambridge University Press:  16 July 2018

Crystal L. Brogan
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA email: thunter@nrao.edu
Todd R. Hunter
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA email: thunter@nrao.edu
Gordon MacLeod
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp 1740, South Africa
James O. Chibueze
Affiliation:
SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, Cape Town, 7405, South Africa
Claudia J. Cyganowski
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We present subarcsecond resolution pre- and post-outburst JVLA continuum and water maser observations of the massive protostellar outburst source NGC6334I-MM1. The continuum data at 5 and 1.4 cm reveal that the free-free emission powered by MM1B, modeled as a hypercompact HII region from our 2011 JVLA data, has dropped by a factor of 5.4. Additionally, the water maser emission toward MM1, which had previously been strong (500 Jy) has dramatically reduced. In contrast, the water masers in other locations in the protocluster have flared, with the strongest spots associated with CM2, a non-thermal radio source that appears to mark a shock in a jet emanating 2″ (2600 au) northward from MM1. The observed quenching of the HCHII region suggests a reduction in uv photon production due to bloating of the protostar in response to the episodic accretion event.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abraham, Z., Cohen, N. L., Opher, R., Raffaelli, J. C., & Zisk, S. H. 1981, A&A, 100, L10Google Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., et al. 2016, ApJ, 832, 187CrossRefGoogle Scholar
Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R., et al. 2016, Nature (Physics) 13, 276Google Scholar
Chibueze, J. O., Omodaka, T., Handa, T., et al. 2014, ApJ, 784, 114CrossRefGoogle Scholar
Diaz-Miller, R. I., Franco, J., & Shore, S. N. 1998, ApJ, 501, 192CrossRefGoogle Scholar
Evans, N. J. II, Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJ (Supplement) 181, 3213510Google Scholar
Goedhart, S., Gaylard, M. J., & van der Walt, D. J. 2004, MNRAS, 355, 553CrossRefGoogle Scholar
Hanson, M. M., Howarth, I. D., & Conti, P. S. 1997, ApJ, 489, 698CrossRefGoogle Scholar
Hirota, T., Tsuboi, M., Kurono, Y., et al. 2014, PASJ, 66, 106CrossRefGoogle Scholar
Hosokawa, T. & Omukai, K. 2009, ApJ, 691, 823CrossRefGoogle Scholar
Hunter, T. R., et al., 2017b, ApJ, submittedGoogle Scholar
Hunter, T. R., Brogan, C. L., MacLeod, G., et al. 2017a, ApJ, 837, L29CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., Megeath, S. T., et al., 2006, ApJ, 649, 888CrossRefGoogle Scholar
Inayoshi, K., Sugiyama, K., Hosokawa, T., Motogi, K., & Tanaka, K. E. I. 2013, ApJ, 769, L20CrossRefGoogle Scholar
Kenyon, S. J., Hartmann, L. W., Strom, K. M., & Strom, S. E. 1990, AJ, 99, 869CrossRefGoogle Scholar
MacLeod, G., et al., 2018, MNRAS, acceptedGoogle Scholar
MacLeod, G. C. & Gaylard, M. J. 1996, MNRAS, 280, 868CrossRefGoogle Scholar
McGuire, B. A. 2017, ApJ, 851, L46CrossRefGoogle Scholar
Moscadelli, L., Sanna, A., Goddi, C., et al. 2017, A&A, 600, L8Google Scholar
Offner, S. S. R. & McKee, C. F. 2011, ApJ, 736, 53CrossRefGoogle Scholar
Omodaka, T., Maeda, T., Miyoshi, M., et al. 1999, PASJ, 51, 333CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ, 783, 130CrossRefGoogle Scholar
Tolmachev, A. 2011, The Astronomer's Telegram 3177Google Scholar
Turner, B. E. & Matthews, H. E. 1984, ApJ, 277, 164CrossRefGoogle Scholar
Zernickel, A., Schilke, P., Schmiedeke, A., et al. 2012, A&A, 546, A87Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 53 *
View data table for this chart

* Views captured on Cambridge Core between 16th July 2018 - 1st March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The extraordinary outburst in NGC6334I-MM1: dimming of the hypercompact HII region and destruction of water masers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The extraordinary outburst in NGC6334I-MM1: dimming of the hypercompact HII region and destruction of water masers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The extraordinary outburst in NGC6334I-MM1: dimming of the hypercompact HII region and destruction of water masers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *