Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T11:31:36.384Z Has data issue: false hasContentIssue false

Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

Published online by Cambridge University Press:  08 May 2018

Matt J. Jarvis
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK email: matt.jarvis@physics.ox.ac.uk Astrophysics Group, Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
Rebecca A.A. Bowler
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK email: matt.jarvis@physics.ox.ac.uk
Peter W. Hatfield
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK email: matt.jarvis@physics.ox.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aird, J., Coil, A. L., Georgakakis, A., et al. 2015, MNRAS, 451, 1892CrossRefGoogle Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., et al. 2015, MNRAS, 452, 1817Google Scholar
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, ApJ, 803, 34Google Scholar
Condon, J. J., Anderson, M. L., & Helou, G., 1991, ApJ, 376, 95Google Scholar
Condon, J. J., 1992, ARA&A, 30, 575Google Scholar
Cooray, A. & Sheth, R., 2002, Physics Reports, 372, 1Google Scholar
Davies, L. J. M., Huynh, M. T., Hopkins, A. M., et al. 2017, MNRAS, 466, 2312Google Scholar
Fernandes, C. A. C., Jarvis, M. J., Rawlings, S., et al. 2011, MNRAS, 411, 1909CrossRefGoogle Scholar
Finkelstein, S. L., Ryan, R. E., Papovich, C. Jr, et al. 2015, ApJ, 810, 71CrossRefGoogle Scholar
Guhathakurta, P., Tyson, J. A., & Majewski, S. R., 1990, ApJL, 357, L9Google Scholar
Hale, C. L., Jarvis, M. J., Delvecchio, I., et al. 2018, MNRAS, 474, 4133Google Scholar
Hardcastle, M. J., Evans, D. A., & Croston, J. H., 2006, MNRAS, 370, 1893CrossRefGoogle Scholar
Harikane, Y., Ouchi, M., Ono, Y., et al. 2016, ApJ, 821, 123Google Scholar
Hatfield, P. W., Lindsay, S. N., Jarvis, M. J., et al. 2016, MNRAS, 459, 2618Google Scholar
Hatfield, P. W., Bowler, R. A. A., Jarvis, M. J. & Hale, C. L. 2017, arXiv:1702.03309Google Scholar
Hatfield, P. W. & Jarvis, M. J., 2017, MNRAS, 472, 3570Google Scholar
Heckman, T. M. & Best, P. N., 2014, ARA&A, 52, 589Google Scholar
Jarvis, M. J., Smith, D. J. B., Bonfield, D. G., et al. 2010, MNRAS, 409, 92Google Scholar
Jarvis, M. J., Bonfield, D. G., Bruce, V. A., et al. 2013, MNRAS, 428, 1281Google Scholar
Johnston, R., Vaccari, M., Jarvis, M., et al. 2015, MNRAS, 453, 2540Google Scholar
Madau, P. & Dickinson, M., 2014, ARA&A, 52, 415Google Scholar
McLure, R. J., Dunlop, J. S., Bowler, R. A. A., et al. 2013, MNRAS, 432, 2696Google Scholar
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJL, 660, L43Google Scholar
Ono, Y., Ouchi, M., Harikane, Y., et al. 2017, PASJ, (arXiv:1704.06004)Google Scholar
Ouchi, M., Mobasher, B., Shimasaku, K., et al. 2009, ApJ, 706, 1136Google Scholar
Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ, 723, 869Google Scholar
Ouchi, M., Harikane, Y., Shibuya, T., et al. 2017, arXiv:1704.07455Google Scholar
Rawlings, S. & Saunders, R., 1991, Nature, 349, 138Google Scholar
Smith, D. J. B., Dunne, L., da Cunha, E., et al. 2012, MNRAS, 427, 703CrossRefGoogle Scholar
van der Kruit, P. C., 1971, A&A, 15, 110Google Scholar
Willott, C. J., Rawlings, S., Blundell, K. M., & Lacy, M., 1999, MNRAS, 309, 1017Google Scholar
Wilman, R. J., Miller, L., Jarvis, M. J., et al. 2008, MNRAS, 388, 1335Google Scholar
Whitaker, K. E., van Dokkum, P. G., Brammer, G., & Franx, M., 2012, ApJL, 754, L29Google Scholar
Yun, M. S., Reddy, N. A., & Condon, J. J., 2001, ApJ, 554, 803Google Scholar
Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005, ApJ, 633, 791Google Scholar