Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T20:55:16.084Z Has data issue: false hasContentIssue false

Extended nebular emission in CALIFA early-type galaxies

Published online by Cambridge University Press:  09 February 2015

J. M. Gomes
Affiliation:
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal email: jean@astro.up.pt; papaderos@astro.up.pt
P. Papaderos
Affiliation:
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal email: jean@astro.up.pt; papaderos@astro.up.pt
C. Kehrig
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n Aptdo. 3004, E18080-Granada, Spain
J. M. Vílchez
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n Aptdo. 3004, E18080-Granada, Spain
M. D. Lehnert
Affiliation:
GEPI, Observatoire de Paris, UMR 8111, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The morphological, spectroscopic and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Hα equivalent width EW(Hα)∼0.5 … 2 Å) extranuclear nebular emission extending out to ≥2 Petrosian50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013, hereafter P13) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim, and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW(Hα)∼1–3 Å in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by the post-AGB stellar component being the main driver of extended wim emission. The second class (type ii) consists of virtually wim-evacuated ETGs with a large Lyman continuum (Lyc) photon escape fraction and a very low (≤0.5 Å) EW(Hα) in their nuclear zone. These two ETG classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by P13 by the class i+ which stands for a subset of type i ETGs with low-level star-forming activity in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon budget in ETGs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Allen, M. G., Groves, B. A., Dopita, M. A., et al. 2008, ApJS, 178, 20Google Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5CrossRefGoogle Scholar
Binette, L., Magris, C. G., Stasińska, G., & Bruzual, A. G. 1994, A&A, 292, 13Google Scholar
Dopita, M. A. & Sutherland, R. S. 1995, ApJ, 455, 468CrossRefGoogle Scholar
Gomes, J. M., Papaderos, P., Kehrig, C., Vílchez, J. M., Lehnert, M. D., Sánchez, S., Ziegler, B., et al. 2014, in prep.Google Scholar
Ho, L. C. 2008, ARA&A, 46, 475Google Scholar
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055CrossRefGoogle Scholar
Kehrig, C., Monreal-Ibero, A., Papaderos, P., et al. 2012, A&A, 540, A11 (K12)Google Scholar
Kelz, A., Verheijen, M. A. W., Roth, M. M., et al. 2006, PASP, 118, 129Google Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121CrossRefGoogle Scholar
Papaderos, P., Izotov, Y. I., Fricke, K. J., Thuan, T. X., & Guseva, N. G. 1998, A&A, 338, 43Google Scholar
Papaderos, P., Gomes, J. M., Vílchez, J. M., et al. 2013, A&A, 555, L1Google Scholar
Roth, M. M., Kelz, A., Fechner, T., et al. 2005, PASP, 117, 620Google Scholar
Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8Google Scholar
Sánchez, S., Advances in Astronomy, Issue: Metals in 3 D: A Cosmic View from Integral Field Spectroscopy, 2014a, in pressGoogle Scholar
Sarzi, M., Shields, J. C., Schawinski, K., et al. 2010, MNRAS, 402, 2187Google Scholar
Schawinski, K., Thomas, D., Sarzi, M., et al. 2007, MNRAS, 382, 1415CrossRefGoogle Scholar
Stasińska, G., Vale Asari, N., Cid Fernandes, R., et al. 2008, MNRAS, 391, L29Google Scholar
Trinchieri, G. & di Serego Alighieri, S. 1991, AJ, 101, 1647CrossRefGoogle Scholar
Yan, R. & Blanton, M. R. 2012, ApJ, 747:61Google Scholar