Skip to main content Accessibility help
×
Home

Exploring the physics of core-collapse supernovae with multidimensional simulations: from axisymmetry to three dimensions

  • Alexander Summa (a1), Hans-Thomas Janka (a1), Florian Hanke (a1) (a2), Tobias Melson (a1) (a2), Andreas Marek (a3) and Bernhard Müller (a4) (a5)...

Abstract

Multidimensional effects are essential for the success of the neutrino-driven explosion mechanism of core-collapse supernovae. Although astrophysical phenomena in nature involve three spatial dimensions, the huge computational demands still allow only for a few self-consistent, three-dimensional (3D) simulations focusing on specific aspects of the explosion physics, whereas systematic studies of larger sets of progenitor models or detailed investigations of different explosion parameters are restricted to the axisymmetric (2D) modeling approach at the moment. Employing state-of-the-art neutrino physics, we present the results of self-consistent core-collapse supernova simulations performed with the Prometheus-Vertex code in 2D and 3D. The 2D study of 18 successfully exploding pre-supernova models in the range of 11 to 28 solar masses shows the progenitor dependence of the explosion dynamics: if the progenitor exhibits a pronounced decline of the density at the Si/Si-O composition shell interface, the rapid drop of the mass-accretion rate at the time the interface arrives at the shock induces a steep reduction of the accretion ram pressure. This causes a strong shock expansion supported by neutrino heating and thus favors an early explosion. In case of a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. By considering the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We show that this concept can also be extended to describe the effects of rotation as well as the behavior of recent 3D simulations and that the conditions necessary for the onset of explosion can be defined in a similar way.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Exploring the physics of core-collapse supernovae with multidimensional simulations: from axisymmetry to three dimensions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Exploring the physics of core-collapse supernovae with multidimensional simulations: from axisymmetry to three dimensions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Exploring the physics of core-collapse supernovae with multidimensional simulations: from axisymmetry to three dimensions
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Exploring the physics of core-collapse supernovae with multidimensional simulations: from axisymmetry to three dimensions

  • Alexander Summa (a1), Hans-Thomas Janka (a1), Florian Hanke (a1) (a2), Tobias Melson (a1) (a2), Andreas Marek (a3) and Bernhard Müller (a4) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed