Skip to main content Accessibility help
×
Home

Exploring shallow sunspot formation by using Implicit Large-eddy simulations

  • F. J. Camacho (a1), G. Guerrero (a1), P. K. Smolarkiewicz (a2), A. G. Kosovichev (a3) and N. N. Mansour (a4)...

Abstract

The mechanism by which sunspots are generated at the surface of the sun remains unclear. In the current literature two types of explanations can be found. The first one is related to the buoyant emergence of toroidal magnetic fields generated at the tachocline. The second one states that active regions are formed, from initially diffused magnetic flux, by MHD instabilities that develop in the near-surface layers of the Sun. Using the anelastic MHD code EULAG we address the problem of sunspot formation by performing implicit large-eddy simulations of stratified magneto-convection in a domain that resembles the near-surface layers of the Sun. The development of magnetic structures is explored as well as their effect on the convection dynamics. By applying a homogeneous magnetic field over an initially stationary hydrodynamic convective state, we investigate the formation of self-organized magnetic structures in the range of the initial magnetic field strength, 0.01 < B 0/B eq < 0.5, where B eq is the characteristic equipartition field strength.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Exploring shallow sunspot formation by using Implicit Large-eddy simulations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Exploring shallow sunspot formation by using Implicit Large-eddy simulations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Exploring shallow sunspot formation by using Implicit Large-eddy simulations
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Smolarkiewicz, P. K., & Charbonneau, P. 2013, J. Comput. Phys., 236, 608
Lipps, F. B., Hemler, R.S., A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 39 (1982) 21922210
Borrero, J. M. & Ichimoto, K., Magnetic Structure of Sunspots, Living Rev. Solar Phys., 8, (2011), 4.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed