Skip to main content Accessibility help
×
Home

Experimental realization of dynamo action: present status and prospects

Published online by Cambridge University Press:  18 July 2013

André Giesecke
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf P.O.B. 510119, D-01314, Dresden, Germany email: a.giesecke@hzdr.de
Frank Stefani
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf P.O.B. 510119, D-01314, Dresden, Germany email: a.giesecke@hzdr.de
Thomas Gundrum
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf P.O.B. 510119, D-01314, Dresden, Germany email: a.giesecke@hzdr.de
Gunter Gerbeth
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf P.O.B. 510119, D-01314, Dresden, Germany email: a.giesecke@hzdr.de
Caroline Nore
Affiliation:
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), CNRS, BP 133, F-91403 Orsay cedex, France email: nore@limsi.fr
Jacques Léorat
Affiliation:
Observatoire de Paris-Meudon, place Janssen, F-92195 Meudon, France email: jacques.leorat@obspm.fr
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies).

In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Berhanu, M. et al. 2007, Europhys. Lett., 77, 59001 CrossRefGoogle Scholar
Consolini, G. & De Michelis, P. 2003, Phys. Rev. Lett., 90, 058501 CrossRefGoogle Scholar
Gailitis, A. et al. 2000, Phys. Rev. Lett. 84 (19), 43654368 CrossRefGoogle Scholar
Gailitis, A. et al. 2004, Phys. Plasmas 11 2838–2843 CrossRefGoogle Scholar
Giesecke, A., Stefani, F. & Gerbeth, G. 2010, Phys. Rev. Lett., 104, 044503 CrossRefGoogle Scholar
Giesecke, A. et al. 2012, New J. Phys. 14 (5), 053005CrossRefGoogle Scholar
Krauze, A. 2010, Magnetohydrodynamics 46 (3), 271280 Google Scholar
Krause, F. & Rädler, K.-H., Mean-field magnetohydrodynamics and dynamo theory, Oxford, Pergamon Press, 1980 Google Scholar
Léorat, J. 2006, Magnetohydrodynamics, 42 (2–3), 143151 Google Scholar
Malkus, W. V. R. 1968, Science 160 259–264 CrossRefGoogle Scholar
Marié, L., Normand, C. & Daviaud, F. 2006, Phys. Fluids, 18, 017102 CrossRefGoogle Scholar
Monchaux, R. et al. 2007, Phys. Rev. Lett., 98, 044502 CrossRefGoogle Scholar
Monchaux, R. et al. 2009, Phys. Fluids 21 (3), 035108 CrossRefGoogle Scholar
Mouhali, W. 2010, PhD Thesis, Université Paris-Diderot – Paris VIIGoogle Scholar
Nore, C., Léorat, J., Guermond, J.-L. & Luddens, F. 2011, Phys. Rev. E 84 (1), 016317 CrossRefGoogle Scholar
Stefani, F., Gailitis, A., & Gerbeth, G. 2008, Z. Angew. Math. Mech. 88 930954 CrossRefGoogle Scholar
Stefani, F., Gailitis, A., & Gerbeth, G. 2011, Astron. Nachr., 332, 4 CrossRefGoogle Scholar
Stefani, F. et al. 2012, Magnetohydrodynamics 48 (1), 103113 Google Scholar
Stieglitz, R. & Müller, U. 2001, Phys. Fluids 13 561564 CrossRefGoogle Scholar
Tilgner, A. 2005, Phys. Fluids 17 (3), 034104 CrossRefGoogle Scholar
Ponomarenko, Y.-B. 1973, J. App. Mech. Tech. Phys. 14 775778 CrossRefGoogle Scholar
Ravelet, F., Dubrulle, B., Daviaud, F. & Ratié, P.-A. 2012, Phys. Rev. Lett. 109 (2), 024503 CrossRefGoogle Scholar
Verhille, G. et al. 2010, New J. Phys. 12 (3), 033006 CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P. 2009, Geophys. Astrophys. Fluid Dyn. 103 (6), 467501 CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 57 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-77fc7d77f9-vchrx Total loading time: 1.394 Render date: 2021-01-18T02:28:38.627Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 01:55:17 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental realization of dynamo action: present status and prospects
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Experimental realization of dynamo action: present status and prospects
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Experimental realization of dynamo action: present status and prospects
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *