Skip to main content Accessibility help
×
Home

Evolution of Supermassive Black Holes

  • Charline Filloux (a1), J. A. de Freitas Pacheco (a1), Fabrice Durier (a1) and Joseph Silk (a2)

Extract

Cosmological simulations describing both the evolution of supermassive black holes and their host galaxies were performed by using the tree PM-SPH code GADGET-2 (Springel 2005). Physical mechanisms affecting the dynamics and the physical conditions of the gas (ionization and cooling processes, local heating by stars, injection of mechanical energy by supernovae, chemical enrichment) were introduced in the present version of the code (Filloux 2009). Black holes in a state of accretion (AGNs) also inject mechanical energy in the surrounding medium, contributing for quenching the star formation activity. In all simulations a ΛCDM cosmology was adopted (h = 0.7, ΩΛ=0.7, Ωm=0.3, Ωb=0.046 and σ8=0.9). Simulations were performed in a volume with a side of 50h−1 Mpc, starting at z = 50 and through the present time (z = 0). For low and intermediate resolution runs, the initial gas mass particles are respectively 5.35× 108M and 3.09×108M. Black holes (BHs) are represented by collisionless particles and seeds of 100 M were introduced in density peaks at z = 15, growing either by accretion or coalescence. The accretion rate from the “disk mode” is based on a turbulent viscous thin disk model whereas in the “spherical mode” the rate is given by the Bondi–Hoyle formula. When accreting matter, jets, modeled by conical regions perpendicular to the disk plane, inject kinetic energy into the surrounding medium. Two models were tested: in the first, the injected energy rate is about 10% of the gravitational energy rate released in the accretion process while in the second, the injected energy rate is based on the Blandford & Znajek (1977) mechanism. All simulations give, at z = 0, similar black hole mass function but they overestimate slightly the BH density for masses above ~ 108M. The resulting BH density in this mass range is affected by feedback processes since they control the amount of gas available for accretion. The present simulations are not able to produce very massive BHs (~109M) at z ~ 6. However the evolution of the BH mass density derived from our simulations are in quite good agreement with that derived from the QSO luminosity function. This indicates that our simulations reproduce quite well the average accretion rate history of BHs. Correlations between the BH mass and properties of the host galaxy (velocity dispersion for bulge systems or the stellar mass or the dark halo mass) are also well reproduced. In conclusion, these exploratory simulations reproduce the data at z = 0 quite well. However, the present adopted recipe for the accretion rate in the “disk mode” seems to be inefficient to produce massive BHs as early as z ~ 6. Higher resolution simulations including a new approach for modeling the “disk mode” are presently under way and that particular difficulty is expected to be solved.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolution of Supermassive Black Holes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evolution of Supermassive Black Holes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evolution of Supermassive Black Holes
      Available formats
      ×

Copyright

References

Hide All
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433
Filloux, C. 2009, PhD thesis: ftp://ftp.oca.eu/pub/filloux/
Springel, V. 2005, MNRAS, 364, 1105
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed