Skip to main content Accessibility help
×
Home

Earth-like planet detection with Extremely Large Telescopes: fundamental limitations

  • Cavarroc Céline (a1), Boccaletti Anthony (a1), Baudoz Pierre (a1), Fusco Thierry (a2) and Rouan Daniel (a1)...

Abstract

Direct detection and characterization of Earth-like planets from the ground is a very challenging issue. Among the projects, the Extremely Large Telescopes are very promising to improve the angular resolution and to increase the total number of collected photons. We studied this type of instruments in a very optimistic case to evaluate what level of aberrations limits fundamentally the detection. For that purpose, we considered a perfect coronagraph coupled with an extreme adaptive optics device. Even with a Strehl ratio of more than 96%, it only provides a contrast of $10^{-6}-10^{-7}$ at $30\lambda/D$. A calibration system downstream the coronagraph is therefore mandatory to reach the contrast of $10^{-10}$ between a terrestrial planet and its star in the near infra-red. We modelized a very general system taking into account dynamic aberrations left uncorrected by the adaptive optics system, static aberrations of the system and differential static aberrations due to the calibration channel. Numerical simulations demonstrate that the static aberrations are becoming very limitative and must not be neglected. Indeed, to achieve a contrast of $10^{-10}$, with common aberrations of 5 nm on a 100 meter telescope, the differential aberrations must be controlled at the level of 200 picometers. We also compare this speckle noise to the limitation due to the photon noise.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Earth-like planet detection with Extremely Large Telescopes: fundamental limitations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Earth-like planet detection with Extremely Large Telescopes: fundamental limitations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Earth-like planet detection with Extremely Large Telescopes: fundamental limitations
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Earth-like planet detection with Extremely Large Telescopes: fundamental limitations

  • Cavarroc Céline (a1), Boccaletti Anthony (a1), Baudoz Pierre (a1), Fusco Thierry (a2) and Rouan Daniel (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.