Skip to main content Accessibility help
×
Home

The earliest phases of massive star formation within entire molecular cloud complexes

  • Frédérique Motte (a1), S. Bontemps (a2), P. Schilke (a3), D. C. Lis (a4), N. Schneider (a2) and K. M. Menten (a3)...

Abstract

We started (sub-)millimeter continuum and line studies of entire molecular cloud complexes located at intermediate distances from the Sun (1–3 kpc). Such an unbiased approach allows to identify and characterize the earliest phases of high-mass stars overlooked by IRAS or MSX. Our complete MAMBO-2 surveys of the Cygnus X and NGC 7538 complexes reveal a large population of ${\sim} 0.1$ pc-size massive young stellar objects (MYSOs) harboring high-mass infrared-quiet protostars. The determination of the nature of all the new millimeter sources is still in progress but we have already collected evidence that the infrared-quiet (or class 0-like) protostellar phase might last as long as the better-known infrared-bright protostellar phase. Besides, our complete census of MYSOs fails to discover the high-mass analogues of pre-stellar dense cores. We propose that the observed lower-density pre-stellar clumps (${>} 1$ pc) rapidly concentrate and collapse as also found in the kinematical studies of other prominent clumps. Indeed, CS and HCO$^+$ mappings in W43 and Cygnus X suggest global supersonic contraction with inward velocities of several km s−1 on parsec scales. Our work and similar studies of entire star-forming complexes will thus definitively contribute to a better knowledge of the earliest phases of high-mass star formation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The earliest phases of massive star formation within entire molecular cloud complexes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The earliest phases of massive star formation within entire molecular cloud complexes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The earliest phases of massive star formation within entire molecular cloud complexes
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

The earliest phases of massive star formation within entire molecular cloud complexes

  • Frédérique Motte (a1), S. Bontemps (a2), P. Schilke (a3), D. C. Lis (a4), N. Schneider (a2) and K. M. Menten (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.